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Abstract

We present a review of the inflationary scenario. A description of the Cosmolog-
ical Standard Big Bang Model (CSM) is given and it is explained how the problems
of the CSM are solved by inflation, i.e., the horizon, flatness, large scale structures
and monopole problems. In particular it is shown that inflation with a duration
of 60 Hubble times implies an increase in the horizon distance dg by 27 orders of
magnitude, a decrease in the density parameter minus one |Q — 1| by 54 orders of
magnitude and a dilution of the concentration of monopoles by 78 orders of mag-
nitude. Moreover, the Slow Roll approzimation (SR), which is a specific model of
inflation, is described. The parameters of this model, i.e., €, n and &2 can be directly
compared with cosmological observations. Using the results from the Wilkinson Mi-
crowave Anisotropy Probe three-year data (WMAP3), it shall be argued that the
SR approximation is a valid model for the early Universe.
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Introduction 1

1 Introduction

The Cosmological Standard Big Bang Model (CSM) has since the discovery of the cos-
mological expansion and the cosmological microwave background radiation (CMB) been
the leading theoretical framework for the evolution of the Universe. However, some seri-
ous problems have appeared. These are the horizon, flatness, large scale structures and
monopole problems.

In the early 1980s a new framework was invented by [Guth, 1981] and [Linde, 1982];
the inflationary scenario. It proposed that from 10 36s to 10~ 3's after Big Bang, the
Universe went through a period of exponential expansion. Inflation is inferred as an
initial condition of the CSM model and solves the main problems of the CSM.

The exponential expansion could, according to [Linde, 1982], be caused by a scalar
potential arising from a scalar field. In this report the theory of inflation is based on a
single scalar field, the inflaton ¢, and it is seen how the problems of the CSM are solved.
Ever since the first framework of inflation was proposed, many variations have arisen. In
this report the Slow Roll approzimation (SR) is chosen, since it according to recent data,
is a reliable approximation [Kinney et al., 2006]. We show how observations are used to
test the SR. Even though, the inflationary scenario provides a nice framework for solving
the problems of the CSM, some serious problems still remain to be answered.

It should be noted that in this report natural units are used, meaning that ¢ = h =1,
unless where otherwise mentioned.

2 Standard Big Bang Cosmology

In this section an overview of the CSM is presented. This report is based on the equa-
tions of this section and they form the basis of all other equations to be derived later.
The CSM is a mathematical model based on the Einstein field equations Eq. (2.5), given
that the cosmological principle can be used as an assumption. The cosmological princi-
ple states that the space-time in the Universe can be approximated to be homogeneous
and isotropic. We shall in this report assume that this approximation holds for scales
larger than 200M pe. There is somewhat different estimates of the size of these scales
[Ryden, 2003, Lachieze-Rey et al., 1999]. Furthermore, it is assumed that the matter in
the Universe can be described by simple thermodynamics; i.e, by a perfect fluid only
depending on the density p and the pressure p [Kolb and Turner, 1999].

To be able to describe the evolution in time, the cosmic standard time t is defined. It is
scaled so that tiy Bang = 0 and ttod4ay = to. The temperature 7" of the Universe is often
used as an expression of time too.
The thermodynamical assumption ensures a relation between the temperature and the
cosmic standard time. When the Universe is dominated by radiation, the relation between
time and temperature is given by

tpramer \ /2 100
~ _ptanck ~ 1/2
Tralt) = Tyones (2455 ) 2 3z [ 7] (21)
where the Planck temperature is Tpianer = 1.2 - 10%eV and the Planck time is tpapck =
5.39 - 10~**s. Hence, a rule of thumb is that ¢t = 1s corresponds to T}qq = 1M eV, which
according to [Bergstrom and Goobar, 1999] is the time where the Big Bang Nucleosyn-
thesis, i.e., the time where atoms were formed, took place.



2 The Inflationary Scenario in The Early Universe

When describing the Universe we use the co-moving coordinates (¢,7,6, ¢). This means
that in a Universe, which obeys the cosmological principle, only a function of time, e.g.,
the scale factor (see page 5), is needed to describe an object’s location, etc.

2.1 The Robertson Walker metric

The Robertson Walker metric (RW) is a spatially homogeneous and isotropic metric,
which obeys the cosmological principle and the laws of thermodynamics. The derivation
of the RW metric is beyond the scope of this text. We shall only state the general form
in co-moving coordinates (¢,r, 8, ¢) [Weinberg, 1972].

2
1— kr2

Where dr is the proper time and is by definition an expression of the distance between
two events in the space-time geometry [Olesen and Ambjrn, 2003]. R(t) is the curvature
scalar (Sec. 2.2) and k is the spatial curvature constant, which denotes whether the Uni-
verse is positively curved (k = +1), negatively curved (k = —1) or flat (k = 0).

dr® = dt* — R*(t) < + 7% (d* + sin20d¢2)> (2.2)

By introducing a new radial coordinate x and defining r = Sy (z) the RW metric can be
rewritten [Ryden, 2003]

sin(z) k=+1
Se(z) = T k=0 (2.3)
sinh(z) k=-1
U
dr* = dt* — R*(t) (dz® + Si(z) (d6” + sin*0d¢?)) (2.4)

This form is used when defining the proper distance in Sec. 3. The metrics Egs. (2.2) and
(2.4) do not look the same, but they still represent the same homogeneous and isotropic
space, only with different choices of radial coordinate.

2.2 Deriving the Friedmann Equation

In this section the RW metric and the assumptions of homogeneity, isotropy and ther-
modynamics are used to derive the Friedmann equation. This equation describes the
connection between the expansion of the Universe, the energy density and a possible
cosmological constant. When dealing with the evolution of the Universe the Friedmann
equation is the main equation.

The Einstein field equations for gravitation are a set of non-linear second order differen-
tial equations and allows a computation of the gravitational field from a given energy-
momentum distribution. In tensor form the field equations are given by

1
Gu =Ry — 59,“,32 = —87GTy + Aguw (2.5)

G is the Finstein tensor. It is symmetric, so that the order of the subscripts on T,
R and g are of no importance. G is the well-known gravitational constant and A is the
cosmological constant, which will be described in Sec. 2.3.
The subscripts p and v refer to the chosen co-moving coordinates. When doing calcula-
tions i and j represents the three co-moving spatial coordinates r, # and ¢ and ¢ is the



2.2 Deriving the Friedmann Equation 3

time coordinate. Thus, for the different tensors the time-time component is denoted by
tt, the space-space components are denoted by ;; and the mixed space-time components
are given by ;.

The quantity g, is the metric tensor. It describes the relation between the different
components of a given location in space. For instance, in Euclidean space the metric
tensor is just the Kronecker delta matrix, which gives the well known z, y and z com-
ponents. The metric tensor has the ability to manipulate the subscripts of other tensors
via contraction or expantion of the given tensor.

The tensor R, is the Ricci tensor and it is defined as the contraction of the Riemann-
Christoffel curvature tensor: Rf;M = R,,. This tensor controls the geometry, i.e., for
instance the curvature in the space-time. Contracting the Ricci tensor gives the curvature
scalar R. The Ricci tensor controls the rate of growth in the space, which in our case is
the 4D space-time.

The energy momentum tensor T, is sometimes called the stress energy tensor and
describes, as indicated by the name, the energy and the momentum relations between
the different components of the co-moving coordinates. The reason why it is sometimes
called the stress energy tensor, is that 7}, corresponds to the four-momentum across a
surface - which is the stress on this surface. When assuming homogeneity and isotropy
we have that Ty = p(t), Tij = p(t)gi; and Ty = 0, where p is the energy density (Sec. 2.3)
and p is the pressure, which is the stress on a given surface [Weinberg, 1972]. This clearly
illustrates the properties of the energy momentum tensor.

Using rather simple tensor manipulations and the assumption that the energy momentum
tensor T}, is described by a perfect fluid, it is possible to rewrite Eq. (2.5). The steps in
rewriting the Einstein field equations from Eq. (2.5) to (2.6) are outlined in App. A.

1
Ryy = =87G | 5(p = P)guv + (0 + 0)9ur U 9 U" | = Mgy (2.6)

The Uts and U"s are the four-velocities in space-time. It should be noted that p and p
only depend on time, because of homogeneity and isotropy. This form of Einstein’s fields
equations is preferable, since it makes the derivation of the Friedmann equation easier.
The components of the metric tensor g,, are the coefficients to the differential parts in
the RW metric Eq. (2.2). As an example, the time-time part of the metric tensor is the
coefficient to the dt*>-term of Eq. (2.2). The coefficients are

TET mr
0 e R w2l T 960 97
it ;o Git v Yij 9ij r2sin®0  gep @7
0 Gi#j

The change in signs compared to Eq. (2.2) is a result of the chosen diagonal (—, +, 4+, +).
This does not change the physics and is exclusively done to make the derivation in this
section.

The Ricci tensor is connected to the affine connection Ff;,, (see App. B). Most of the
components of the affine connection are equal to zero [Weinberg, 1972]. This implies that
some of the Ricci tensor components equal zero. The non-vanishing components of the
Ricci tensor are stated in Eqs. (2.8) and (2.9).

The components of the Ricci tensor involving time, that is, the time-time and space-time
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components, are given by [Weinberg, 1972]

3R
Ry = x Rit =0 (2.8)
where a dot represents differentiation with respect to time. The spatial part of the Ricci
tensor is

Rij = Rij - (fRfR + 23'22)@3'
= —2kgi; — (RR + 2R?)g;,
S (Qk +RR + 2922) Gis (2.9)
Here it is assumed that Rij = —2kg;j, which according to [Weinberg, 1972] is true for

maximally symmetric spaces such as the RW metric.
Since the space-time part is zero, we will now focus on the R;;-component and the spatial
Ricci tensor.

To estimate the four-velocities in Eq. (2.6) the following definitions from [Weinberg, 1972]
are used

vt=1 U'=0 (2.10)

The second equation states the fact that co-moving coordinates are used. It shows that
the material of the Universe is at rest in the co-moving coordinate system (r, @, 6).
Using Eqgs. (2.6), (2.7) and (2.10) another expression of the different parts of the Ricci
tensor appears.

Rtt

e (%(p DD+t p)(—l)l(—l)l) A1)

1 1
= -8&rG (—§p+§p+p+p> +A

2 2
= —4nG(p+3p)+A (2.11)

1
—8rG (—p+ §p> +A

and

1 . . . .
R = -8rG (5 (b —p)RGi; + (p + /))ngjm?gijo) — AR?Gy;
= (4nGlo—p) - MR, (219)

The next step is to eliminate the R-parts in the non-vanishing components of the Ricci
tensor. By comparing Egs. (2.8) and (2.11) the acceleration equation is obtained

3R
Rtt = T = —477G(p+3p)+A

U

.. 4 A
R = —”TG(ersp)ﬂugaz (2.13)
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and by comparing Eqgs. (2.9) and (2.12) gives

R; = - (2k +RR + 23’12) Gij = (—47G(p—p) — N) R2Gy;
0 = —2k—RR—2R?+47G(p — p)R? + AR?
li .
5 _ WGlp-pR +yAﬂz2 — 2k — 2R2 (2.14)

Combining the acceleration equation and Eq. (2.14) leads to the Friedmann equation

4G A 47G(p — p)R2 + AR — 2k — 2R
—W—(p+3p)fR+—fR _ AnGl PR+
3 3 R
U
1 1 E o R2
—47rG(§p+p—p+p>fR = AR(1—§>—2§—2§
U
R\ srG kA
<§> = Sty (2.15)

When using the RW metric, R describes the curvature of space and depends on the
era, i.e., matter radiation or A, in which it is described. In other words, the curvature
scalar scales the metric and the evolution of the Universe. Therefore, when dealing with
the CSM, R is named the scale factor. The scale factor is consequently a geometrical
dimensionless factor depending on time, which describes the changes of the distances in
the Universe as a function of time. The scale factor is normalized so that R(today) =
R(to) =1.
The Hubble parameter H is defined through the scale factor

H(t)? = (&) = %p(t) __k +% (2.16)

R() 3

Apart from the Friedmann equation the equation of energy conservation is also needed,
when describing the Universe via. CSM. This equation can be derived by assuming,
among other things, that the energy momentum tensor is conserved.

The equation of energy conservation is given by [Bergstrom and Goobar, 1999]

PR = % (R*(p+p)) =3R*R(p +p) + R*(p + p) (2.17)
lJ( .
0 = 3%(p+p)+pﬁ (2.18)

This equation is also known as the fluid equation [Ryden, 2003]. It is derived in App. B,
and it will in Sec. 2.3 be used to find a relation between the energy density and the scale
factor.
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We note that the redshift, z can be expressed as a function of the scale factor. The
redshift, is defined as the ratio between the light’s wavelength when it was emitted and
when it was observed, i.e., z + 1 = i‘\"—” Thus, z > 0 indicates that the wavelength is
enlarged, and thereby has been shifted to the red part of the optical spectrum. When
z < 0 the wavelength has become smaller and the light is blueshifted.

The wavelength of a photon is given by A ~ 1/p, where p is the momentum of the
photon. The momentum of the photon can be expressed as a function of the expansion
of the Universe[Kolb and Turner, 1999]

1
PR RE
Combining this expression with the definition of the redshift gives

Ritors) 1
R(ter) ~ R(D (2.19)

z+1=

The last equality sign appears when assuming that the light is observed today, i.e.,
tops = to, and leaving out the emission subscript. Thereby, the redshift is the relative
reddening of the observed lightwaves, caused by the expansion of the Universe.

2.3 The Energy Density p and the Density Parameter 2

The evolution of the Universe is complicated by the fact that it contains components
with different equations of state. In this section approximations are done to get a feeling
of the energy density of the Universe.
It is assumed that in general the equation of state can be written in the simple linear
form

p=wp (2.20)

which is true for ”substances of cosmological importance” [Ryden, 2003]. The w is the
dimensionless equation of state parameter. For any given energy-component carrying
momentum, w is given by [Ryden, 2003]

)
wR (2.21)
Where (v?) is the root mean square thermal velocity of the given component. This equa-
tion gives w = 0 for a gas of non-relativistic particles, and w = % for a gas of relativistic
particles. These examples are of particular interest, because both components exist in
our Universe today. For simplicity, we shall refer to the component of the Universe that
consists of non-relativistic particles as "matter”, and the component that consists of pho-
tons and other relativistic particles as ”radiation”.

Many cosmologists believe that the Universe consists of a third component. This com-
ponent is defined as one providing the Universe with a positive acceleration (R > 0),
and is in general referred to as the ”dark energy”. Thereby, Eq. (2.13) gives p < —% P,
which causes w < —%. One such dark energy component is the cosmological constant.
The cosmological constant results in a constant energy contribution, meaning that p = 0,

which, according to the fluid equation (2.18), implies that p = —p = w = —1.

Agsuming that the Universe consists of matter, radiation and a cosmological constant,
the total equation of state is given by
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The form of energy w

Radiation +3
Matter ~0
The cosmological constant A | —1

Table 2.1: The general values of the equation of state parameter w for different kinds of
energy.

pP=Y_ wpu (2.22)
w
where the w-parameter as mentioned takes the values given in Table 2.1.
As long as there is no interaction between the different energy-components, the fluid

equation (2.18) must obtain for each component separately. Hence, the component with
equation of state parameter w obeys the equation

R
0 = pu+t 3§(pw + pw) (2.23)
I
N
0 = puw+ 3§(1 + W) py (2.24)

If it is assumed that w is constant and the normalization R(¢p) = 1 is used then
puw(R) = pw,OR_3(1+w) (2.25)

The zero denotes that it is the energy density at present for the given component. Sum-
marising the three different components we see that the total energy density of the
Universe is

Pm,o | Pro
p= 3”53 + 924 + pao (2.26)
where m and r indicates the matter and radiation contributions respectively. This equa-
tion gives that in the early Universe, when R < 1, p was dominated by radiation. Later
it was dominated mostly by matter, and at some point the energy density will be domi-
nated by the energy corresponding to the cosmological constant.

When fitting the various parameters to observations, p is compared with the critical
density p., which is the energy density that makes the Universe perfectly flat. This com-
parism is done because the number p alone does not provide any qualitative information.
The density parameter €2 is therefore introduced

(2.27)

From the Friedmann equation Eq. 2.16, the critical density corresponds to p. = %

by setting k& = 0 and ignorring the A term, since this term does not have any influence
in the early Universe. We could for instance estimate the size of A at last scattering,
which is when the Universe became transparent to photons at z;s ~ 1100. Combining
Egs. (2.16), (2.19) and (2.26) gives that A should at least be of the order ®;;* ~ 10°
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to have influence on p.. Since recent data indicates that A < 10°, this is not the case
[Spergel et al., 2006]. Using the definition of p. and Q it follows from Eq. (2.16) that

k 877G

w5 = Tpc(ﬂ —-1)=H*Q-1) (2.28)
Hence, 2 > 1, 2 =1 and Q < 1 correspond to k = +1, £k = 0 and k = —1 respectively.
The Eq. (2.28) has a simple intuitive appeal. A very large 2 gives a huge amount of
energy, which counteracts the expansion and makes the Universe closed. Similarly, if (2
is very small, there is very little counteraction to expansion, and the Universe is open.

Since p. is given in terms of the Hubble constant, and since 2 could in principle be

determined by the mass density in the Universe, Eq. (2.28) allows a determination of the
sign of k, and hence the fate of the Universe.

3 Problems in Standard Big Bang Cosmology

In this section we will present the four major problems which makes the CSM a defective
model for the very early Universe. To describe the problems, we shall introduce the
proper distance d,, which is one of the distance notations in the CSM. Using the RW
metric, assuming that the Universe is flat and if time is instantly frozen, i.e., dt*> = 0,
the proper distance is defined as [Ryden, 2003]

dy(z,t) = R(t) /OI dex = :R(t)/t ﬂz(lt')dtl (3.1)

where z is the radial co-moving coordinate and t. is the time at which the light was
emitted. The second equality sign is obtained by considering the way light travels toward
us. Light travels along the metric’s zero geodesics, i.e., dr = 0. Since the angles in the
RW metric by definition are constant along a zero geodesic, one gets that dt> = R(t)2dz?,
which by simple manipulation gives the second equality sign. The proper distance is used
to quantify the horizon problem.

3.1 The Horizon Problem

Mesurements of the CMB show that the temperature fluctuations % =2-10"° at

10 degrees angular scales [Bergstrom and Goobar, 1999]. That the fluctuations are that
small is a problem because, as we will show in this section, all regions in the Universe
could not initially have been causally connected. If the regions have not at some point
been in causal contact, it would be impossible for them to gain the same temperature
with such a high precision.

For instance, from the proper distance defined in Eq. (3.1) the horizon distance dy
can be defined. The horizon distance is the proper distance which light has traveled in
a given time. This then describes the horizon of the visible Universe for an observer
”located” at tg receiving the light emitted at tz. Because of lack of time the light from
distances greater than zz has not arrived yet. Thereby

dr

dp(to) = jQ(to)/ dx
0
to 1 to

1
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Furthermore, assuming that the equation of state of the Universe is p = wp, as in
Sec. 2.3, the Universe is flat and p is dominated by a single component, and combining
this with Eqs. (2.16) and (2.25), gives

R(t) = ( t )m (3.3)

to

This expression for R(t) is derived in App. C and gives that

to 1 to t *3(1iw)
dig = —dt:/ (—) dt
ty (t) ty t[)

143w 7 to
_ 3w, [
T 1+3w |\
ta

1/3
3to (1 — (t—H) > : matter-dominated

0

1/2 (3.4)
2tg (1 — (i—g) > ; radiation-dominated
Letting tg < to gives that the time between emission and observation is large and that
the ratios in Eq. (3.4) can be approximated to zero. Hence, for matter- and radiation-
domination the particle horizon distance is finite! If ¢tz = 0, the light was emitted at the
same time as the Big Bang, which corresponds to the largest possible horizon distance.

The dy is the size of the observable Universe inside which a particle is causally con-
nected with all other particles. Material outside such a volume is therefore not causally
connected to the particle from which the horizon distance is measured. If this constant
distance is smaller than the size of the Universe, not all particles are causally connected.
This creates the horizon problem because of the isotropy of the CMB. Furthermore, the
usage of thermodynamics in the CSM is limited to this horizon, and one cannot state
that this holds for the rest of the Universe, which was assumed in Sec. 2.2 when deriving
the Friedmann equation.

To get an idea of the size of the problem one might ask the question: How large a fraction
of the Universe is causally connected? This fraction could be given by %’. From Eq. (3.3)
R o t2/% and R  t'/? for matter- and radiation-domination respectively. Letting to in
Eq. (3.4) represent the time ¢ in the given eras, this makes the fraction evolve as:

dn ~ t1/3 . matter-dominated
t1/2 : radiation-dominated

R

Thus as time passes, more and more particles become causally connected. This means
that in the distant past the horizon problem was even more pronounced.

To describe the horizon problem more quantitatively one can use the total entropy of
the Universe as a measure of the causally connected regions. As mentioned earlier one
of the assumptions when dealing with the CSM is that the Universe is described by
simpel thermodynamics. The total entropy S in the differential form of the first law of
thermodynamics is defined as

d(pV) +pdV. _ d((p+p)V) = Vdp
T T

dS — (3.5)
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where V' is the volume considered and T is the temperature. If we assume that the volume
is the entire Universe, so that V = R3, and that the energy is conserved Eq. (2.17), then
the entropy is conserved in thermal equilibrium, that is dS = 0. Rewriting Eq. (3.5) and
integrating over dS gives the total entropy S (see App. D).

S = % (p+p) (3-6)

Using Bose Einstein statistics on the radiation-dominated era, an expression for the en-
ergy density can be derived, and using from Sec. 2.3 that relativistic particles is governed
by the equation of state p = p/3, gives

7.[.2

prad(T) = %.gefff(T)T4 (37)
prad(T) = 5praa(T) = 5geps ()T 58

where g.zy is the total number of effective degrees of freedom [Kolb and Turner, 1999].
Combining these expressions for p and p with the expression for the total entropy and
defining the entropy density s = S/V, we get for radiation-domination
272

_ 3
Srad = ﬁg:ffT (39)

When matter dominates the Universe, the entropy density is defined as s,,,+ = s(today)(1+
2)? =2970(1+42)% em ™3, where s(today) is calculated from equation (3.9) with the values
9gers(today) = 3.91, geys(today) = 3.36 and T'(today) = 2.75K [Kolb and Turner, 1999].
In the equation above

- T\® 7 T;\*
gerr = ' Z gi (T) + g Z 9j (T) (3.10)
i=bosons j=fermions

The gesy is defined in the same way as g2 s¢- The only difference being that the exponents
for g.rs is four instead of three.

The Hubble parameter goes as 2% for radiation-domination, which combined with Eq. (3.7)
gives

2 (871G “U2 930 [8x\?
toc = [ 222 pyaa(T) = S I L N | WL - (3.11)
3 3 37 3 ,/gefsz ,/gefsz

Here the general notation of the Planck mass m,; = G~1/? ~ 10'°GeV is used. If 5,44 is
multiplied with the volume of the Universe inside the horizon, i.e., the approximation of
Eq. (3.4), the total entropy is given by

32
T 38 raa (3.12)

Srad —
3

AT 3 —
Horizon ?strad -

3

_ 7 _ Ml Egs T3
3 ’ NI 45 7elt
s 3

0.94- 711 (%)

1

32\ T
erf
3
~ 0.94g,,, (%) . fort < 1s (3.13)



3.2 The Flatness Problem 11

The last equality sign appears when assuming that g’ 75 geff- This approximation is
valid when the temperature ratios in the definitions of g2 I and geyy are close to unity,
i.e., all the particle species have common temperatures. This is the case as long as neither
the neutrinos are decoupled nor the electrons annihilate. At temperatures T ~ 1MeV
neutrinos decouple and electrons annihilate, so according to Eq. (2.1), Eq. (3.13) holds
for t < 1s.

Combining Eqgs. (3.9) and (3.12) with the fact that the horizon distance for matter-
domination can be written as dg mat = Hio(l + 2)~3/2 [Kolb and Turner, 1999], gives an
estimate of the total entropy in the matter-dominated era

47 dr [ 2\? 272
t _ 3 _ —9/2 3
Sggrizon - ?dHSTU«d - ? (E) (1 + Z) / Eg:ffT (314)
where Hy is the present Hubble time. Correcting for natural units so that dg = HLO ~
10%%¢m and using that the temperature goes as Tenpo/R gives that
gmat |~ 1080(1 4 2) 73/ (3.15)

We thus see that the total entropy, and thereby the number of causally disconnected
regions, becomes smaller as z grows, that is R — 0. At last scattering (z;s ~ 1100)
the entropy was ~ 108!; that is 10° times smaller than the entropy at present. That
10° regions which were causally disconnected when light was emitted have the same
temperature today is the horizon problem formulated in the context of the total entropy
of the Universe.

3.2 The Flatness Problem

The flatness problem arises because p is very close to p. [Ryden, 2003]. Using Eqs. (2.16),
(2.26) and (2.27) we see that.

kA
RZH? 3H?
k_3{2A
= 3 3.16
T (B 1 Bd 4 Ropag) by 1

0-1 =

When leaving out the A-term this gives

Q-1=

k : - i
) - o~ { R ; matter-dominated (3.17)

8nG (pmo 4 ProO R2? : radiation-dominated
3 ( ® t 3 ’

Thus, it is seen that  — 1 goes as R(t) and R*(t) when the Universe is matter and radi-
ation dominated respectively. Hence, in the early radiation dominated Universe, where
R was small, the difference between 1 and 2 was very small.

Observations show that today € = 140.2 [Ryden, 2003]. From Eq. (3.17) it follows that
in the early Universe |Q — 1| ~ 10%(z + 1)~ 2 [Kolb and Turner, 1999]. Estimating the
value of the density parameter at the time of Big Bang Nucleosynthesis, i.e., when the
temperature was 1MeV, gives

TBBN -2 1066V -2 _
0 =1+10* =1+10* | ——— ~1+6-10"% (3.18
BEN ( CMB,O) (2.35 10 %6V (3.18)




12 The Inflationary Scenario in The Early Universe

where it is used that Toyp,o = 2.35 - 10~%eV. That the initial value of the density
parameter is one with such a high accuracy is the flatness problem.

3.3 Large Scale Structures

A third problem is that CSM does not explain the excistense of large scale structures
in the Universe, e.g., galaxies, galaxy clusters, filaments and voids. When deriving the
Friedmann equation it is assumed that the Universe is homogeneous and isotropic. To
create the observed large scale structures there must have been a mechanism causing the
Universe to be anisotropic on small scales, so that gravitational infall could have created
the observed structers. If such a break did not occur, no large scale structures would
have been formed, because of the assumption of homogeneity and isotropy in CSM.

3.4 The Monopole Problem

When the Universe had an age of ~ 107'%s, there was enough energy to fuse the elec-
tromagnetic force (EM) and the weak nuclear force into one force. For earlier times
physicists believe that also the strong nuclear force was fused with the other two forces.
This should have happened when the temperature reached 10?8K, i.e., when the Universe
was around 1073%s old [Ryden, 2003]. This fusion of the EM, the weak and the strong
forces is in literature referred to as the Grand Unified Theory (GUT).

If this Grand Unification has happened, the phase transition followed by the breaking
of symmetry would have caused a series of topological defects. These topological de-
fects are, among others, cosmic strings and point-like defects, which behave as magnetic
monopoles. These would have dominated the Universe completely because of their high
masses [Kolb and Turner, 1999].

The fact that there will be an overweight of magnetic monopoles after symmetry break-
ing, together with the fact that magnetic monopoles are not observed, is another problem
with the CSM. How can it be that we do not see the topological defects today when it
seems that they dominated the very early Universe? How did they disappear, if they
have existed at all?

These questions as well as the questions mentioned above have to be answered to get a
precise model for the Universe at all times. The model that might give us the answers is
the inflationary scenario.

4 The Inflationary Scenario

In general the CSM has many successful features and gives a nice framework for discussing
the rather few astronomical observations governing the very early Universe. However, as
described in Sec. 3 certain problems with the initial conditions emerge from the model.
In search of the best physical model of the Universe the CSM has to be supplied with
further theory to ensure the correct initial conditions. Today the best supplement to the
CSM is the inflationary scenario.

The basic idea of inflation is proposed by [Guth, 1981] and is extended and corrected by
[Linde, 1982]. They argue that shortly after the Big Bang, an extreme expansion, which
cause a positive acceleration, blow up the Universe. After inflation the Universe enter
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the radiation-dominated epoch described by the CSM. Within this broad framework,
many specific models for inflation has been proposed. In this report models with ”nor-
mal” gravity, i.e., general relativity, and which describe the vacuum by a single scalar
field ¢, the inflaton, are considered. It is assumed that the quantum fluctuations in
the scalar field are negligible compared to the classical part of the field. According to
[Kolb and Turner, 1999] this is a fairly good approximation. Hence, working with the
scalar field

@(t) = QClassic T PQuantum = PClassic (41)

The potential arising from this scalar field will be referred to as V().

The main feature of inflation is the transition from a false vacuum where inflation takes
place, to the true vacuum which corresponds to the end of inflation. Often this transi-
tion results in some field-oscillations. The duration of these oscillation is called the epoch
of reheating. We will not go into details about reheating, only mentioning that in this
process particles are created and that the temperature rises to ~ 10°GeV. A potential
with such features could be a typical slow roll potential, as in Fig. 6.1 page 19.

During inflation the energy density p and the pressure p are dominated by the scalar field
. When assuming that ¢ is spatially homogeneous and using a Lagrangian on the form
L = 0"p0,p/2 — V(p), the p and p are given by

P =LAV . pe= i V(p) (4.2)

2
When using Eq. (4.2) and the conservation of energy-momentum, (7", = 0), the equa-
tion of motion of the inflaton is given by

G+3Ho+V'(p) =0 (4.3)

where H is the Hubble parameter defined in Eq. (2.16). A prime denotes d/dyp. For
derivation of (4.2) and (4.3) see App. B.

To understand Eq. (4.3) more intuitively, the inflaton can be compared with a ball
rolling down a hill. In this case; ¢ is the acceleration, ¢ is the velocity with the friction
term 3H (often referred to as the Hubble-friction) and V' () corresponds to the variation
of the potential energy as the ball rolls.

Using the RW metric as the flat (k = 0) background metric without any contribution
from the cosmological constant, the Friedmann equation, Eq. (2.16), is given by

i = <3> =8 = ST i) + 5] (14)

R 3 " 3m12)l 2

The last equality sign is obtained by inserting the expression for p, i.e., Eq. (4.2).
Furthermore, when using Eq. (4.2) the acceleration equation Eq. (2.13) reduces to:

£) - ot
= e -4 (45
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Thereby, the equation of energy conservation, Eq. (2.17), of the inflaton is

0 = —poR>+3R2R(py + py) + R2(py + Do)
R
= pPpt 3§(Pw + py) (4.6)
In the inflation era the Universe is dominated by vacuum energy (p = —p). Such a

Universe is called a de Sitter Universe [Kolb and Turner, 1999]. From Eq. (4.2) it is seen
that this can be accomplished by assuming that (> <« V. Assuming that ¢ is monotone
in time, H can be expressed as a function of ¢ only.

R 8
H = <§> = &n&viw) (4.7)
(X
, se \ 21 Vi)
o = (o) o =

Setting the potential to be constant in time, implies that H is constant, and the solution
to Eq. (4.7) becomes

R o eflt (4.9)

which is the exponential expansion needed to solve the problems in CSM, see Sec. 5.
From the assumption that ¢? < V the equation of motion Eq. (4.3) can be re-expressed.

. ¢+ V'(e)
Y= 3H
V)
3KV ()
_ 2 (1 ¢ 1. V(o)
T (iKV(w)l/z 3 V(«p)l/Z)
m12ol 1 ‘P !
T (§Kv(¢)1/2 n (¢)> (4.10)

Here K is for simplicity defined as

5 1/2
K=[—2 (4.11)
3mpl

Furthermore, we can rewrite the acceleration equation Eq. (4.5) once more by substituting
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the expressions for V' and ¢. This gives that

R mi /1 @ 2
i — K2 HQK—Q _ pl —K HI
R ( 1672 \2 V(p) 72 ©

— H2 _ m_IZ)lHIQ mIZ)l ((K()O)Q +K2 HI>

6 6r \ 4V (p) “H
2
m
= H'-ZH" - F(p)
ma (H'\? ;
2
= H? (1 -3 e> - F(®) (4.12)
where ) )
my, (H'
and )
LmE ((K@)? LH
F(p)= -2 K2p— 4.14
@)= 52 (ks + K% (114)

The definition of F(¢) is made for simplicity. The € is defined since it is one of the SR
parameters, which can be compared to observations (Sec. 6.1).

In order to satisfy the assumption R > 0 during inflation, we need € < 3/2 and F()
to be insignificant. Our calculations deviate a little from for instance [Kinney, 2002],
since they get that € < 1 Because 1 ~ 3/2 this does not change anything crucial.

As a consequence of Eq. (4.9) the evolution of the scale factor from the beginning until
the end of the inflation era can be written as

tfinal
R o exp (/ Hdt> (4.15)

tinitial

The number of e-foldings, N, is a measure of the duration of inflation, and is defined as
[Kinney, 2002]

tr Yr 7
N = Hdt = / —dyp (4.16)
t; Yi

When [Kinney et al., 2006] analyze the latest data and do model calculations for com-
parisons, they use that 46 < N < 60. We shall in the rest of this text use the value N =
60, since this is commen consensus [Hansen and Kunz, 2002, Kolb and Turner, 1999,

Lyth and Riotto, 1999] and solves the problems of CSM as shown in the next section.

5 Solving the Problems of the Standard Model

To see how inflation solves the problems of the CSM, it is imagined that inflation is
switched on instantaneously at a time ¢; and switched off at a time ¢;. It is proposed that
the Universe prior to the exponential growth is radiation-dominated and return to this
former state after inflation (the exact transition during and immediately after reheating
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is unknown, there may have been a brief period of matter-domination [Linde, 2005]). As
mentioned, the Hubble parameter is constant during inflation. We shall indicate this
constant by H;, which is the value of H when inflation starts. Using Eq. (3.3) and
Eq. (4.15) the scale factor is then given by

Ri(t/t;)'/? t<t
R = RieHi(t=ti) t <t<ty (5.1)
Rieflitr=t) (1 [t )12 ¢ >ty

Thus, during inflation the scale factor increases by a factor

R
WJ; = eflills=ti) = N (5.2)

If inflation lasted for a long time, compared to the Hubble time during inflation, H, t
then N was large, and the growth in the scale factor during inflation was enormous.
Exactly this is the main reason why inflation solves the CSM problems.

5.1 The Horizon problem

We shall now see how inflation solves the horizon problem. The horizon distance at any
time ¢ is given by Eq. (3.1). At the beginning of inflation dy is

d (t~)—fR»/tiL—2t» (5.3)
H\li) — g 0 le(t/tl)l/Z — i .

and at the end of inflation dy is

ki dt b dt
dp(ts) = Rel¥ ( —_— + > 5.4
() o Rt " )y, RecmplHi 1) o
For a large amount of e-foldings Eq. (5.4) reduces to
du(ty) = eN(2t; + H;7') = 3eMt; (5.5)

A specific example shows how the exponential growth solves the problem. In the cal-
culations ¢ is included to correct for natural units. Assuming that inflation starts at
t; ~ 107305, and thereby assuming that the Hubble-parameter is H; ~ 106571, the size
of the horizon at the beginning of inflation is

di(t;) = 2ct; = 2(3-10'° - 1073 em =6 - 10*6cm (5.6)
The size of the horizon immediately after inflation is then
di(ty) = 3c-eNt; ~ 3(3-101 - €% - 107%) ~ 10em (5.7)

Hence, during inflation the horizon distance is increased by 27 orders of magnitude. So
even though 10cm does not seem as much in a cosmological context the expansion is
€normous.

The huge expansion ensures that the entire last scattering surface could have been in
causal contact before the epoch of inflation, and the expansion thus gives the isotropy
that we observe today.
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As in Sec. 3.1, the solution to the horizon problem may also be described in the context
of entropy. We want to show that the ~ 103! regions at last scattering, evolve from a
causally connected area.

From the inflationary scenario it is known that reheating increases the temperature
with several orders of magnitude to ~ 10GeV. Since the entropy is constant during
inflation, the entropy at the end of inflation is given by S; = €*¥'S;. The volume equals
R? and is therefore blown up with a factor €. Thus even a small amount of causally
connected regions before inflation become 2 - 107® times larger for N = 60.

As an example, a region before inflation of 10~2*¢m has an entropy of roughly 104
[Kolb and Turner, 1999] and is turned into a region with an entropy of 10°2. Since
the entropy is a constantly increasing factor, the estimate of the causally connected
regions today will easily fit inside the originally causally connected region. Thereby the
inflationary model also solves the horizon problem when looking at it from the entropy
point of view.

5.2 The Flatness problem

As mentioned, the Hubble parameter is constant during inflatio. This combined with
Eq. (3.17) gives an expression of the |Q(t) — 1|-part in the inflationary era

k

|Q(t) — 1] = o

x R7? (5.8)

It is assumed that & is not exactly zero and that the A-contribution is ignored. The scale
factor in the period of inflation is exponential, thereby, at the end of inflation

1Q(t) — 1] oc e 2Hit (5.9)

Thus, comparing the density parameter at the beginning and at the end of inflation gives

10(t;) — 1] oc 27 (Hi 1) = =2V t,) — 1 (5.10)
Since t =ty = N/H; + t;. This gives that
1Q(ty) — 1] ~ e 2N|Q(t;) — 1] ~ e 2|Q(t;) — 1] ~ 10774Q(t;) — 1] (5.11)

Even if the density parameter at the beginning of inflation is huge or very small, the
inflation mechanism lower the density with 54 orders of magnitude. The fact that 2 =
1+6-101¢ one second after Big Bang is now easily accomplished since, using Egs. (3.3)
and (3.17), the density parameter for radiation-dominated eras evolves as

2(143w)
| — 1| oct3e) =¢ (5.12)

Even if the Universe at t; is not flat at all (2 > 1), 60 e-foldings of inflation will make the
Universe extremely flat, i.e., = 1. Hence the inflationary scenario solves the flatness
problem.

5.3 Large Scale Structures

The problem of density fluctuations which evolve to large scale structures, is also solved
within the inflationary scenario. As mentioned, the inflaton field has quantum effects,
which are much smaller than the classical part of the field. These quantum fluctuations
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are nevertheless under inflation moved beyond the Hubble radius because of the rapid
expansion of the Universe. As the fluctuations pass the horizon, they are ”freezed out”,
meaning that they become classical. This results in a conversion from quantum energy
perturbations into classical matter perturbations. As time passes the Hubble horizon
”catches up” with the matter density fluctuations, and they re-enter the observable Uni-
verse. As CSM takes over after inflation, the grains for large scale structure formation
and gravitational infall are now seeded because of the huge expansion. Thus, inflation
gives an explanation of the large scale structure problem [Kolb and Turner, 1999].

5.4 The Monopole problem

As mentioned when solving the horizon problem, the volume of the Universe is blown up
by a factor of €3V during inflation. This effect solves the monopole problem.

If it is assumed that the topological defects did in fact exist, it is seen that after
inflation the number density is diluted by a factor of e*V. This means that any concen-
tration of monopoles or cosmic strings after inflation becomes ~ 107® times smaller (for
N = 60). Therefore, if the topological defects were created it would be almost impossible
to observe any of them today. Thus, the monopole problem is solved by presuming the
inflationary scenario.

6 The Slow Roll Approximation

In this section we will make the Slow Roll approxzimation (SR) to the inflationary scenario.
The SR is chosen since it is comparable with observations of the CMB. The SR param-
eters are directly connected to the observable power spectra and spectral indices, and
thereby to CMB observations (Sec. 6.1). Every inflation model must fit the CMB-data
in order to be accepted. In Sec. 7 we shall describe how [Kinney et al., 2006] recently did
the comparisons with CMB, and use their results to determine whether the SR approxi-
mations is a good model.

The SR demands a rather flat potential so that the rolling ball, see Sec. 4, spends enough
time on the flat part of the potential V. This ensures that the duration of inflation is
long enough to solve the CSM problems.

A typical SR potential has a false and a true vacuum. The false vacuum corresponds
to the part of the potential where the ball is rolling slowly and inflation takes place. At
some point the ball rolls into the true vacuum, which corresponds to the end of inflation
and the beginning of the epoch where the CSM becomes valid. A SR potential could
take the form shown in Fig. 6.1. Before the ball ends up at V() = 0, it will oscillate in
the true vacuum. This oscillation is the reheating as described in Sec. 4.

The actual SR is given by the assumption that the evolution of the field is dominated by
a pull from the expansion of the Universe, which corresponds to ¢ ~ 0. Making ¢ ~ 0
implies that ¢ is approximately constant. This gives the false vacuum plateau in Fig. 6.1.

In the sense of the rolling ball this approximation is easy understandable. The as-
sumption of slow roll makes the acceleration ¢ very small. This is generally true when
V" and V" are much smaller than V. That the derivatives of the potential are very small
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Figure 6.1: A typical Slow Roll potential. The ball on top of the false vacuum illus-
trates the evolution of inflation. As it is slowly rolling towards the true vacuum inflation
takes place. As the ball falls down into the true vacuum inflation ends, and oscillations,
corresponding to the epoch of reheating, take place as the final effect of the inflationary
scenario.

compared to the potential itself ensures that H varies as

&
3m?,

H(p) = V() (6.1)

which gives the desired vacuum-dominated Universe. These assumptions make it possible
to simplify the equations outlined in Sec. 4

~ —TZ—:H’(@) (6.2)
2 (1—§e) (6.3)
20/ [P 1

d 6.4
Mpt Sy, ve((p) 7 (64)

where Eq. (6.4) follows from the approximation Eq. (6.2) and Eq. (4.16). Therefore
dt > 0 = dN < 0. We note that /€ is defined to have the same sign as H'(p).
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(6.5)

6.1 The Parameters €, n and &2

In Eq. (4.1) the quantum effects were ignored. Nevertheless, these give rise to scale-
invariant fluctuations, which because of the rapid expansion, are redshifted to large
wavelengths.
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The spectrum of these fluctuations is, according to [Kinney, 2002], given by
U

P =) 15 |

Here « is a co-moving wave number and u, is a mode function satisfying the differential
equation
d?u, , 1d°8
— =) u.=0 6.7
do? +(“ Bda2>u (67)
where do is the conformal time defined as do = dt/R. The quantity § is defined as

ﬂz%ﬁ(&ﬂz—%ﬁ (6.5)

mpi H

(6.6)

The quantity £ arises in linear perturbation theory when dealing with the power spectra
and the mode function. Watching the steps carefully the S-part in Eq. (6.7) can be
derived [Kinney, 2002]

Ede = 2R°H> (1 +e— S0+ e —2en+ i + §£2> (6.9)

The parameters n and £ can be defined as in Eqgs. (6.11) and (6.12) below. They are
written along with e from Sec. 4.

¢ = m—’2”<Hl(‘p)>2 (6.10)

dr \ H(p)
_omy ()
v = () (611
, _ my (H(QH" ()
¢ = g (" ) (6.12)

The quanteties €, n and £2 are the SR parameters. These parameters play a crucial role
in describing the SR model of inflation.

The assumptions made to ensure SR can now be rephrased. Since V', V" « V and
Eq. (6.1) is obtained, it can be inferred that in order to have SR ¢ <« 1 and || < 1, since
the potential ratios in the equations beneath becomes small.

2 N 2
My, Vv
~ M (Y 1
¢ 167T(V> (0:49)
o Ml (FmE o o (VLN
= ur 2 KV1/2 sr \Vi2 2\V '

When SR is valid the tensor and scalar power spectra, Py and Pg respectively, are,
according to [Kinney, 2002], power laws which give a spectral index n.

n=1—4e+2n (6.15)

The variation of the spectral index with respect to the wave number is given by

dn
— 1
@ dlnk (6.16)
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When « # 0, one says that the inflationary model is running.
The tensor spectral index nyp is
nr = —2¢ (617)

Furthermore, the scalar to tensor ratio r is defined as [Kinney et al., 2006]

r= Pr ~ 16¢ (6.18)
Pr
We thus see that the SR parameters are connected to the spectral indices and the
power spectra. And since these are observables, we get that the SR can be tested against
observations. We are now able to make observational evidence of inflation from for
instance CMB.

7 Measuring Inflation

The parameters n, nt and r are used when comparing inflationary models with obser-
vations. The most recent observations are the Wilkinson Microwave Anisotropy Probe
3 year data (WMAP3) [Spergel et al., 2006]. These data combined with the data from
the Sloan Digital Sky Survey (SDSS) have been analyzed by [Kinney et al., 2006]. They
use the data to set constraints on the potentials V() for various single field inflationary
models, and to discriminate between these.

The idea is to use the measurements to find the form of the inflationary potential. The
fact that observations are directly connected to the SR parameters € and n through the
power spectra and Eqgs. (6.15) and (6.18), makes it possible to compare a given potential
form to the observed data.

In [Kinney et al., 2006] the Monte Carlo reconstruction is used to calculate the duration
and the effects of inflation for a huge number of different models, i.e., models with dif-
ferent n and r parameters. The Monte Carlo reconstruction is a stochastic method for
dealing with observational constraints in order to create inflationary potentials. After
having made the calculations, the idea is to plot the obtained data points in for instance
the n vs. r space or, for running models, the a vs. r space. These calculations can be
compared to real observations and to different types of inflationary potentials.

The process of making the constraints on the scalar potentials is rather simpel. As shown
in [Kinney et al., 2006] it is possible to estimate n and to put a upper bound on r. Using
that » < 0.3 and n = 0.95 combined with Eq. (6.15) and Eq. (6.18) gives

€<0019 ; 7<0.012 (7.1)

These upper bounds on the SR parameters thus give an estimate of the scalar field
potentials since the SR parameters, as shown in Egs. (6.11) and (6.10), are directly
connected to H, which in the inflationary scenario depends on V. Hence, the calculations
give

(ZI(((Z)))Q < o019 (7.2)
m,

H' () A

(H(¢)> < oot (7.3)
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The results of [Kinney et al., 2006] are that models with even just a weak SR are strongly
favored in the region of no running (a # 0) with a ”red” power spectrum, i.e, n < 1.0.
This is exactly the characteristics of simple single field inflation models. Furthermore,
[Kinney et al., 2006] finds that potentials of the form V() oc p? are disfavored, whereas
potentials of the form V(¢) oc ¢? are consistent with all the tested data sets. It should
be mentioned that only upper bounds are made. Hence, the single field inflation models
with an SR, as the ones outlined in Sects. 4 and 6, are consistent with the WMAP3 and
the SDSS observations.

8 The Problems of Inflation

It is tempting to suppose that everything is in order. Unfortunately this is not the case.
The inflationary cosmology gives a very successful scenario for the cosmology of the early
Universe. However, the introduction of inflation using scalar fields leads to a new set of
problems.

8.1 Fluctuation Problem

In Sec. 6.1 it was mentioned that inflationary cosmology produces an almost scale-
invariant spectrum of cosmological fluctuations. The problem is that the predicted am-
plitude of the spectrum exceeds the observational data by several orders of magnitude
[Brandenberger, 2005]. If the amplitude has to match the observations, the coefficient
of the potential of inflation has to lie below a certain value, depending on the form of
the potential. This constraint is not very satisfying, since one of the main goals of the
inflationary scenario is to avoid fine-tunings of parameters of the cosmology.

8.2 Singularity Problem

The CSM has a singularity, the Big Bang, from which the Universe has evolved. The
existence of this singularity is not explained by the CSM, which makes the model in-
complete. By inferring the inflation mechanism some initial conditions to the CSM are
determined, but the original singularity is neither excluded nor explained.

8.3 Cosmological Constant Problem

A widely discussed problem in cosmology concerns the observed smallness of the cos-
mological constant A. The problem is that during inflation the vacuum energy is the
dominating energy component. This is not in agreement with the present smallness of A.

The Einstein field equations with a A-term is given by Eq. (2.5) According to experimental
data
T, ~10°cm™* = 8xG'T}, ~5-10"""cm™? (8.1)

and
A ~107%5em ™2 (8.2)

The primes indicates that the units is not the same as in this report. To be able to
compare A’ with the results in this report the unit s~2 is needed. This is accomplished
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by multiplication with ¢
A=A -2 ~10%em ™2 (8.3)

Hence, the A is still very small and the problem still exists. If the Einstein field equation
is the correct description of the dynamics of the Universe, the right hand side of Eq. (2.5)
has to be of the same order as the experimental results. But an estimate of the present
right hand side of Eq. (2.5) in the framework of quantum field theory, gives an extremely
large value

87G(Ty)o ~ 10%¢cm ™2 (8.4)

Since the cosmological constant is not near this order of magnitude, the observationally
right hand side of Eq. (2.5) does not seems to equal the theoretical predicted right hand
side, which is the problem. [Dolgov, 1995]

Today, the cosmological constant problem is one of the worst fine-tuning problems in
cosmology and is neither explained by inflation nor any other theory of particle physics.

8.4 String Theory - A Possible Solution

The problems with the inflationary cosmology arise from an incomplete understanding
of fundamental physics at ultra-high energies. A possible theory providing a framework
to resolve the problems, is the String theory. String theory contains many scalar fields
which are massless prior to inflation. These provide a possibility to solve the fluctuation
problem and in some specific cases the problem with cosmological singularities. The only
problem with inflation which does not appear to be solvable within the current knowledge
of string theory, is the cosmological constant problem.

8.5 Discussion

It is shown that with around 60 e-foldings the inflation model has the ability to solve
the flatness, horizon, large scale and monopole problems. Furthermore, as explained in
Sec. 7, recent data is in agreement with the single field inflation model. Thus, there are
strong indications that inflation might be the wanted supplement to the CSM. Neverthe-
less, the inflationary scenario is still just a phenomenological description.

Since the SR provides us with cosmological observations, some indications are given that
inflation actually is a part of the description of the early Universe. However, it is clear
that the final statement of the evolution of the Universe cannot be given before new ideas,
of how to make furhter observations, are proposed.

9 Conclusion

When describing the evolution of the Universe, the CSM is still the governing framework,
although some discrepancies have arisen. Four problems of the CSM have been partic-
ulary conspicuous; the horizon, flatness, large scale structures and monopole problems.
It is shown that these problems are solved by inferring a duration of the inflationary
scenario of around 60 e-foldings. Inflation states that the Universe is increased by 27
orders of magnitude from 10736 to 1073's. This immense expansion solves:

e The horizon problem, since all regions in the Universe could have been causally
connected before inflation. Inflation blows the entropy of a region of only 10~ 23cm
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up to 10%2, and the entropy of today (10%) thus easily fits inside, and the problem
is avoided.

e The flatness problem, since any curvature of the Universe would be straightened
out. We have shown that every pre-inflationary density parameter’s difference from
one is lowered by 54 orders of magnitude. Thereby, inflation turns an even extremely
curved space into flat space.

e The monopole problem, since any amount of topological defects would be ex-
tremely diluted. This is true because any number density of monopoles is lowered
by 78 orders of magnitude during inflation.

The problem with the inexplicable large scale structures is solved by inflation,
since the scalar field has quantum fluctuations, which is the foundation for creation of
the large scale structures. Since these are ”frozen out” because of the huge expansion,
they survive until the CSM sets;j in.

To give the best description of the circumstances in the early Universe, many models
within the broad framework of inflation, have been proposed. Investigations show that
in general simple single field models of inflation are favored; and in particular, the SR
model which provides a set of parameters which can be compared with observations.

Hence, the conclusion is that the inflationary SR is favored by observations and is there-
fore an acceptable solution to the problems concerning the initial conditions of the CSM.
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10 Summary in Danish

I rapporten ” The Inflationary Scenario in The Early Universe” er der givet en introduk-
tion til den Kosmologiske Standard Big Bang Model (CSM). Herunder er Friedmann-
ligningen udledt ved hjeelp af simpel tensorregning. CSM understgttes af astronomiske
observationer, dog har modellen nogle alvorlige forklaringsproblemer, horisont-, fladheds-,
storskalastruktur- og monopolproblemet. Disse problemer har at ggre med begyndelse-
betingelserne for CSM. Horisontproblemet opstar, idet der i dag observeres en kos-
mologisk mikrobglge baggrundsstraling (CMB) med en temperatur 7' = 2.73K og med
temperaturfluktuationer % = 10°. Da OSM ikke ggr det muligt for alle punkter pa
himlen at veere kausalt forbundne, er det et problem at Tcarp,o er den samme over hele
himlen med sa stor ngjagtighed. Fladhedsproblemet opstar da observationer i dag
viser, at densitetsparameteren 2 = 1+ 0.2. Da Q = ppc(—(tt)) og pc(t) er den kritiske en-
ergidensitet, der ggr Universet fladt, betyder det at der er staerk evidens for at Universet
tidligere har veeret meget fladt. Det reelle problem opstar, da beregninger viser at Uni-
verset, da det var et sekund gammelt, var fladt med en ngjagtighed pa 6 - 1016, Denne
ngjagtighed kan ikke forklares af CSM. Eksistensen af storskalastrukturer i Univer-
set er en kendsgerning, men ifglge det kosmologiske princip er Universet homogent og
isotropt. Problemet opstar, idet der observeres storskalastrukturer men at eksistensen
af disse under udledningen af CSM udelukkes. Hvis CSM skal gaelde for hele Univer-
sets udvikling, ma der derfor have varet en mekanisme, der pa et tidspunkt har brudt
denne homogenitet og isotropi. Det sidste problem, monopolproblemet, opstar idet
teoretiske beregninger viser, at der i det meget tidlige Univers, var en hgj koncentration
af magnetiske monopoler mv. Da disse endnu ikke er observeret, er det et problem at de
skulle have domineret det tidlige Univers. En accepteret lgsning til CSM-problemerne
er inflationsscenariet. Under inflationen gennemgik Universet en ekstrem eksponentiel
udvidelse. Denne forarsagedes af et skalarfelt og det tilhgrende potential. De generelle
ligninger for inflationen er beskrevet, hvorefter disse er brugt til at lgse de fire CSM-
problemer. Til lgsningen af problemerne benyttes en varighed af inflationen svarende til
60 Hubble tider.

Udregninger giver, at horisontafstanden dg under inflationen vokser med en faktor 10%7,
hvormed de kausalt forbundne regioner blaeses op. Derved kan disse let rumme det
observerbare Univers, som vi ser i dag. Desuden vises det, at |2 — 1| for inflationen bliver
senket med 54 stgrrelsesordener. Universet bliver dermed under inflationen tvunget
til at veere ekstremt fladt. Der argumenteres for at storskalastrukturerne er opstaet
fra det kvantemekaniske bidrag til skalarfeltet. Sadanne kvanteeffekter vil pa grund
af den ekstreme ekspansion af Universet blive ”frosset ude” og derved omdannes til
klassiske densitetsfluktuationer. Disse densitetsfluktuationer forarsagder et gravitationelt
indfald, som danner storskalastrukturerne. Til sidst vises det, at en given koncentration
af monopoler bliver formindsket med en faktor 107® og dermed er der sd godt som ingen
tilbage at observere i dag.

Yderligere indferes Slow Roll approksimationen (SR), der er en approksimation til de
generelle inflationsligninger. SR forudsiger at skalarfeltet ¢ foretog en langsomt rullende
overgang fra falsk til segte vakuum under inflationen. I forbindelse med udarbejdelse af
modellen angives et st af Slow Roll parametre, der kan benyttes til at sammenligne teori
med observationer. Selvom inflationen lgser CSM-problemerne, opstar der et nyt set af
problemer. Disse er kort beskrevet og diskuteret. Konklusionen pa rapporten er, at SR
inflation med en varighed pa ~ 60 Hubble tider er et acceptabelt supplement til CSM.
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A Rewriting Einstein’s Field Equations

Below Einstein’s field equations are rewritten to a form which is of great use when deriving
the Friedmann equation Eq. (2.16).
We start off by stating Einstein’s field equations in tensor form:

1
Gu =Ry — Eg,“,fR = —87GTy + Aguw (A1)
Now, by contracting this equation with the metric tensor g"”, we get the following:
14 1 14 14 14
9" Ry, — 59“ guwR = =87Gg"'T,, +Ag"" g0 (A.2)
U
1
R - 56592 = —=8rGT} + Adl; (A.3)

And since 07 equals 1 when x = v and 0 when k # 7, we get that Einstein summation
over dt is 4, because we are dealing with 4 dimensions (time and 3D space). This gives
that

1
R - §4IR = —8rGT} +4A (A4)
4
R = 8rGT} —4A (A.5)
Substituting this into Eq. (A.1) then gives
1
R, = 29w (87GT) — 4A) — 87G Ty + Aguw (A.6)
1
= 887G (T,“, - §gu,,T[L‘) +(-2A+ Mg (A7)
1
= —8&r@G (T,“, — §guvT;7) — Aguw (A.8)

Now, assuming that the energy momentum tensor 7),, takes the form of a perfect fluid
Ty = Pguv + (p + p)ULUL (A.9)

Einstein’s field equations can be expressed as beneath. In Eq. (A.9) p and p are the
pressure and the density respectively and the Us are four velocities in the four dimensions.
One should note that p and p are only dependent on time!

1
Ry, = -8rG |:pguu + @+ pUU, — §gl“’Tli{| — Aguw (A.10)
1
= —87G [§g,“, (2p—-TH)+ (p+ p)UHU,,] —Aguw (A.11)

1
—87G'S g (20 = (pgli + (0 + P)ULU"))
—87G(p+ p)U,U, — Aguw (A.12)
1
= —87G5gu (20— (P0); + (P + )9 U"U"))
=87G(p + p)UpUy — Aguy (A.13)
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Using the values stated in Eqgs. (2.7) and (2.10) in section 2.2 and using that g, U*U" is
—1 for g =t and O for p = % which using Einstein summation over p gives that g,,U*U*
is in total —1, we get the following:

1
—87TG(p + p)Uqu - Agp,u
1
= —8r@G [§(p - p)guu + (p + p)UMUV:| - Ag’“’
3
1
R, = —81G [5(/) — D) 9w + (P + P9 U guU ”} —Ag  (A14)

Eq. (A.14) is the desired form of Einstein’s field equations used in the derivation of
the Friedmann equation in Sec. 2.2, obtained only by tensor manipulation, assuming the
perfect fluid form of the energy momentum tensor and the definitions of the four-velocities
and the g,,s.

B Deriving the Equation of Motion

The starting point when deriving the equation of motion is the energy momentum tensor
of the form of a perfect fluid

T = —pg"” + (p+ p)U"U" (B.1)

Furthermore, we know from [Bergstrom and Goobar, 1999] that a Lagrangian on the
form

1 1,
L =50"00up = Vip = 56° = V(p) (B.2)
which is 7useful for cosmological applications”, gives a contribution to T"¥ so that

TH = 00"y — Lg"” (B.3)

where a% for simplicity is written as 9.
It is assumed that the scalar field ¢ is spatially homogeneous, thus 0"¢ = 0. This
assumption seems fair since in the CSM we have already assumed that the Universe in

general is isotropic and homogeneous. Combining Egs. (B.1) and (B.3) gives that

0'pd'p — (3¢° = V(p)) g"
T = e , Iy B.4

{ Do — (L V() gV (B4
According to the Einstein summation and basic tensor calculus [Weinberg, 1972], g'tg;; =
8! = —1, and since gy according to Eq. (2.7) is —1, we have that g'* = 1. From (2.7)

we also have that g;; = g/ = 0 for i # j. This gives that the non-vanishing parts of the
energy momentum tensor are given by

Ttt

#-(30-70) = 30+V (B:5)

T = —g" (%sb—V(w)) (B.6)
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Eq. (B.1) together with the definitions Eqs. (2.10) and (2.7) give that the only non-
vanishing components of the energy momentum tensor could also be written as

" = —pg" +@+pU'T" = p (B.7)
T = -pg"+@+pUU" = —pg" (B.8)

If this is combined with Eqs. (B.5) and (B.6), the energy density and the pressure can
be expressed as a function of the inflaton ¢

1

pe =52 +V(0) . pe=58"—V(p) (B.9)

According to [Weinberg, 1972] the conservation of the energy momentum tensor (7", =
0) can be written as
v 1 v v
T, = %aﬂ (VgT*) + 0T =0 (B.10)

where g = —Det(g,,) equals R® for the RW metric.

The quantity Ff;,, in Eq. (B.10) is called the affine connection. In the tensor formalism

the equation of motion of a particle under influence of the gravitational forces is defined
as

[— 8—33)\ e

r T 9 OOz

(B.11)

where the £%s are the coordinates in the freely falling coordinate system where the par-
ticle is located. The z represents any other coordinate system (for instance Cartesian
coordinates). The affine connection is itself not a tensor but is connected to the Ricci
tensor via the equation:

ory,  or),

R)\, = Ry, = +1%,0, —ThT%, (B.12)

ox? oxr Av= np

It can be shown that some of the elements of the affine connection in the RW case equal
zero. This implies that only some of the elements of the Ricci tensor in the RW metric case
are non-vanishing. The non-vanishing parts of the affine connection are [Weinberg, 1972]

I, = RRgy;
I, = X6 = HO (B.13)

i (3g§lj + & gu, + 0'Gji.)

—
.S

ES

I
=
—~~
Qe
L

Combining Eq. (B.10) and the nonvanishing parts of the affine connection with the ex-
pressions for the energy momentum tensor components, gives some relations between the
density, the pressure and their variations in space and time. In particular using the time
components gives the fluid equation known from Sec. (2.2). Hence, combining the results
above gives

0=p+3H(p+p) (B.14)

Using this and the expressions (B.9) for p and p finally gives the classical equation of
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motion for the inflaton scalar field .

0 = o (37+v) +an (36 V) 35 Vi)

2 2
4
0 = gr3Hp+ V@
oty
4
0 = $+3Hp+V'(p) (B.15)

Here an dot represents derivation with respect to time and a prime is derivation with
respect to ¢

C Calculations Leading to Expression for R(t)

Firstly, a couple of assumptions are made:

e A flat Universe: Gives that £ = 0. This is reasonable because, as mentioned in
Sec. 3.2, calculations show that {2 — 1 has been very close to zero for almost the
entire life of the Universe. Today it is believed that 0.8 < 2 < 1.2 [Ryden, 2003].

e Specific equation of state: p = wp. According to [Ryden, 2003] this is a reason-
able assumptions when dealing with cosmology. This ensures that we can use the
expression (2.25) for p from Sec. 2.3.

e Single component Universe: That is p is dominated by only one component so
that p = pw703%_3(1+w). This is also reasonable as long as we only use the equations
for either matter, radiation or cosmological constant dominated eras.

e Expanding Universe: This gives that R>0.

Using these assumptions and the Friedmann equation Eq. (2.16) gives the following:

R2 &G
© = 3 f (€-1)
U
d _ 8rl —3(14w) 2 v
dtfR = ( 3 Pw,oR R (C.2)
U
143w d 87 1/2
R afR = (Tl)w,o) (C.3)

In the step from Eq. (C.1) to Eq. (C.2) we chose (ifR)Z to be positive to obey the

t
fourth assumption.

Now defining the constant C' = (%pw,g)l/2 and using that

1sw d d {1+ 3w s
R R = 1) RO
TR (( 2 ) )
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gives the following.

d (ose 1\ 1+ 3w
E(Rz ) = ( . +1>c (C.4)
U
304w)) 3(1+w)
/d(:R : ) - /(TC> dt (C.5)
U
w 3(1
e <%0) t (C.6)
U
2
3(1 geean)
R(t) = ((%0) t> 7
Calculating the dimension (and multiplying with ¢? to correct for natural units), we see
that the constant alTer)C has dimension s~!. This normalizes the time, so that R(t) is
dimensionless as expected, and defining the constant as % we have the desired expression
¢\ T
R(t) = (—> (C.8)
to

D The Expression for the Total Entropy S

To be able to define the entropy density s, we need an expression for the total entropy. In
doing so we rewrite the first law of thermodynamics in the differential form and integrate
the expression for dS.

The first law of thermodynamics reads

d(pV) +pdV _ d((p+p)V)—Vdp

dS — 7 = (D.1)
Manipulating the differentials, gives

s = % (d(pV) + pdV) (D.2)

- % (Vdp + pdV + pdV) (D.3)

- %(p +p)dV + %V[d(p + p) — dp] (D.4)

= 2dl(p+P)V) ~ ey (03

Since the entropy only depends on the temperature and the volume, it would be preferable
to express the entropy as the sum of these differentials. Thus defining

ds = %dw g—idT (D.6)
gives that
1 Vd
ds = = (p +p)dV+T#dT (D.7)
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The order of differentiation is insignificant, for the entropy and both p and p only depends
on the temperature (meaning that Op/0T = dp/dT and 0p/0T = dp/dT’). This gives
that

2s 98
aTov  9vaT
3
o (1 0 (Vdp
o (70+9) = o (77)
s
_ptp 10 _ ldp 0 (Lldp
™ TrartP) = TdT+V(8V T dT
s
dp _ p+p
Z o= 2 (D.8)

Combining this with the expressions for dS in Eq. (D.5) gives the expression for dS which
can be integrated to get the total entropy.

V(o + p)dT (D.9)

45 = 2d((p+ D)V) ~ 73

Integrating Eq. (D.9) and ignoring the integration constant gives
1 Vv
S = [d5 = [ zdo+pV) = [ 560+ par

= [V(pﬂ?)%] —/—%(p+p)dT—/%(p+p)dT

= 2(o+) (D.10)

This is the desired expression for the total entropy density, which makes it possible to
define the entropy density s = S/V as

_rtp (D.11)



