

PHY-765 SS19 Gravitational Lensing Week 8

(strong) Finding Gravitational Lenses

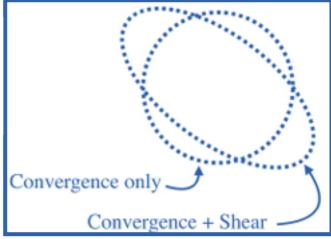
Kasper B. Schmidt

Leibniz-Institut für Astrophysik Potsdam (AIP)

Last week - what did we learn?

- We saw that GL conserves surface brightness
- We defined and expressed the magnification of sources

$$\mu \equiv \frac{1}{\det \mathcal{A}(\boldsymbol{\theta})} \quad \mu = \frac{F(\boldsymbol{\theta})}{F(\boldsymbol{\beta})} \quad -2.5 \log_{10} \left(\frac{F_1}{F_2}\right) = -2.5 \log_{10} \left(\mu\right) = m_1 - m_2$$


• Where $\mathcal{A}(\boldsymbol{\theta})$ is the Jacobian matrix: the transformation between $\boldsymbol{\beta} \& \boldsymbol{\theta}$

$$\mathcal{A}(\boldsymbol{\theta}) = \begin{pmatrix} 1 - \frac{\partial \alpha_i}{\partial \theta_i} & -\frac{\partial \alpha_i}{\partial \theta_j} \\ -\frac{\partial \alpha_j}{\partial \theta_i} & 1 - \frac{\partial \alpha_j}{\partial \theta_j} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\partial^2 \psi}{\partial \theta_i^2} & -\frac{\partial^2 \psi}{\partial \theta_i \partial \theta_j} \\ -\frac{\partial^2 \psi}{\partial \theta_j \partial \theta_i} & 1 - \frac{\partial^2 \psi}{\partial \theta_j^2} \end{pmatrix} \equiv (\delta_{ij} - \boldsymbol{\Psi}_{ij})$$

• Expressed magnification in terms of convergence and shear

$$\Psi_{ij} \equiv \begin{pmatrix} \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & \kappa - \gamma_1 \end{pmatrix} \qquad \mu = \frac{1}{(1 - \kappa)^2 - \gamma^2}$$

• Applications: High-z sources and lens mass (κ) maps

Last few weeks

Source

Plane

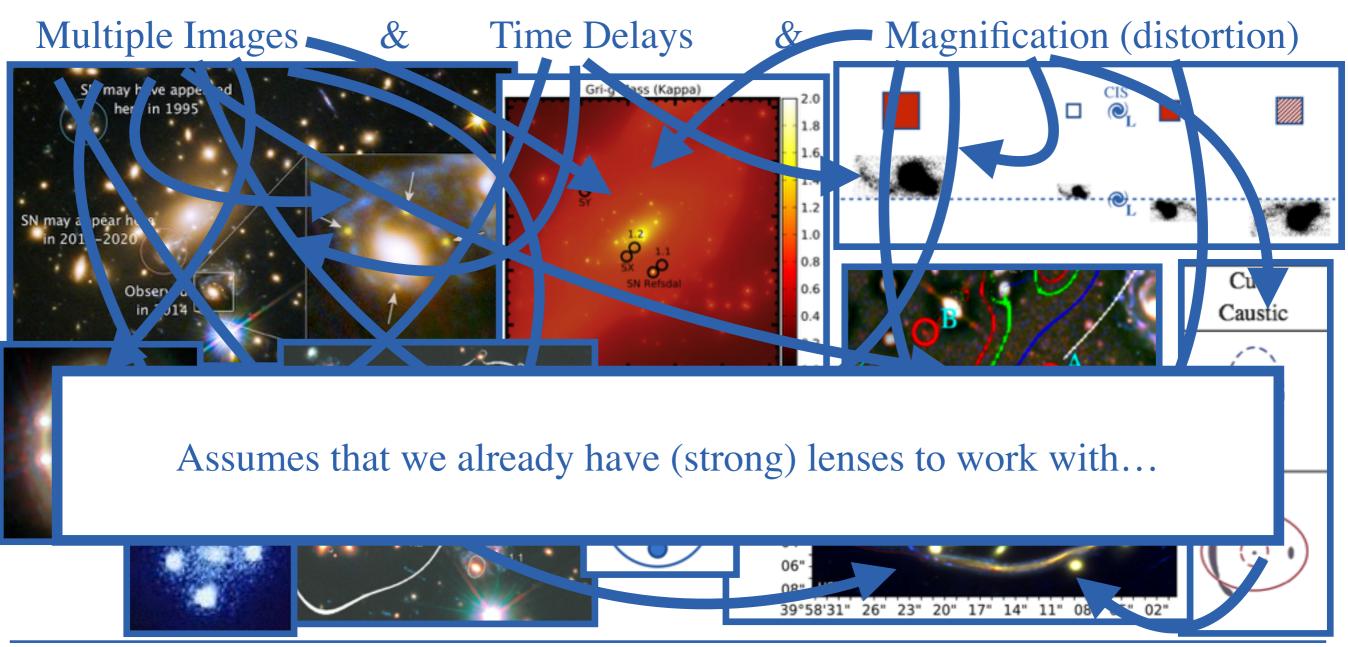
Lens

Plane

D₂

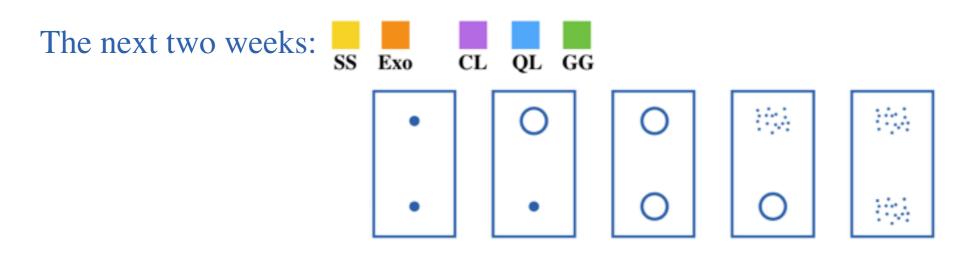
DLS

η: 2D source position in source plane


β: source position angle

0: apparent source position

 D_L


ξ: impact parameter α: deflection angle

- Derived the lens equation $\boldsymbol{\beta} = \boldsymbol{\theta} \boldsymbol{\alpha}(\boldsymbol{\theta})$
- Consequences of the lens equation and GL theory

The aim of today

- How to actually find lenses to be able to exploit their great potential
 - probing the physics of lenses and sources
 - testing theory predictions
- Create a "shopping list" for confirming gravitational lenses
- Look at previous and current lens finding efforts
- Take a peak at the predicted future samples

Finding Lenses the Last 20 Years

QSO lenses

- OGLE I, II, III & IV (Microlensing Week 9)
- Kochanek+98: CfA-Arizona Space Telescope Lens Survey (CASTLeS)
- Ebeling+01: Massive Cluster Survey (MACS)
- Myers+03 & Browne+03: The Cosmic Lens All-Sky Survey (CLASS)
- Oguri+06: The Sloan Digital Sky Survey Quasar Lens Search (SQLS)
- Bolton+06: The Sloan Lens ACS survey (SLACS)
- Hennawi+08: Survey for lensed arcs in SDSS
- Agnello+15 & Nord+16: STRong lensing Insight in the Dark Energy Survey
- Krone-Martins+18: Gaia DR2 Gravitational Lens Systems
- Agnello+17: DES+Gaia
- Frye+18: Massive lensing clusters from Planck and Herschel data
- LSST, WFIRST, JWST, ELTs (Week 14)

Cluster lenses

Your Lens Finding Shopping List

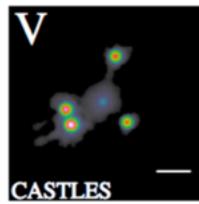
- 2 groups w. pen & paper
- What would you need to confirm a gravitational lens in some data?
- 5-10 minutes

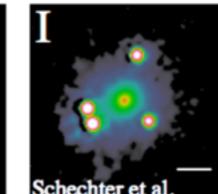
Your Lens Non-Finding Shopping List

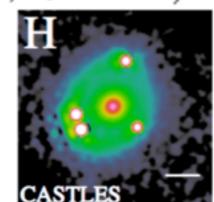
- Same groups
- What is needed to reject candidate lenses in observations
 - Anything else than just inverting your "Lens Finding" list?
- 5 minutes

Lens Finding 'Shopping List'

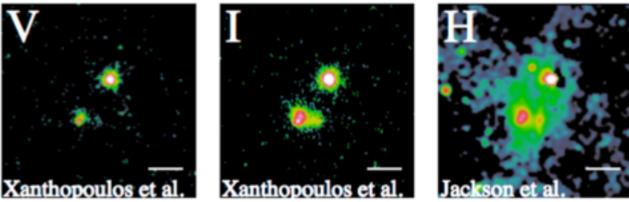
- ≥ 2 images, i.e., multiple images (MI) within a few to tens of arc seconds of each other
- The redshift of MI should be identical (Δz at the sub-% level)
- Chemical composition derived from spectra of MI should be identical
- Line fluxes, line flux ratios and line shapes from spectra of MI should be similar
- The color (i.e., F_{band1}/F_{band2}) of MI should be identical as GL is achromatic
- Lens modeling of the system should be possible
- The location of images should be reproducible by lens model
 - MI should map back to the ~same location in the source plane
 - MI should obey position wrt. to critical curves of the model
- Any flux variation in images should be correlated (time delayed)
- A lens should be present at lower redshift than MI
- The object has an arc or ring like morphology
- Parity flips should match model predictions
- MI systems at different z should obey ordering wrt. critical curves for different z

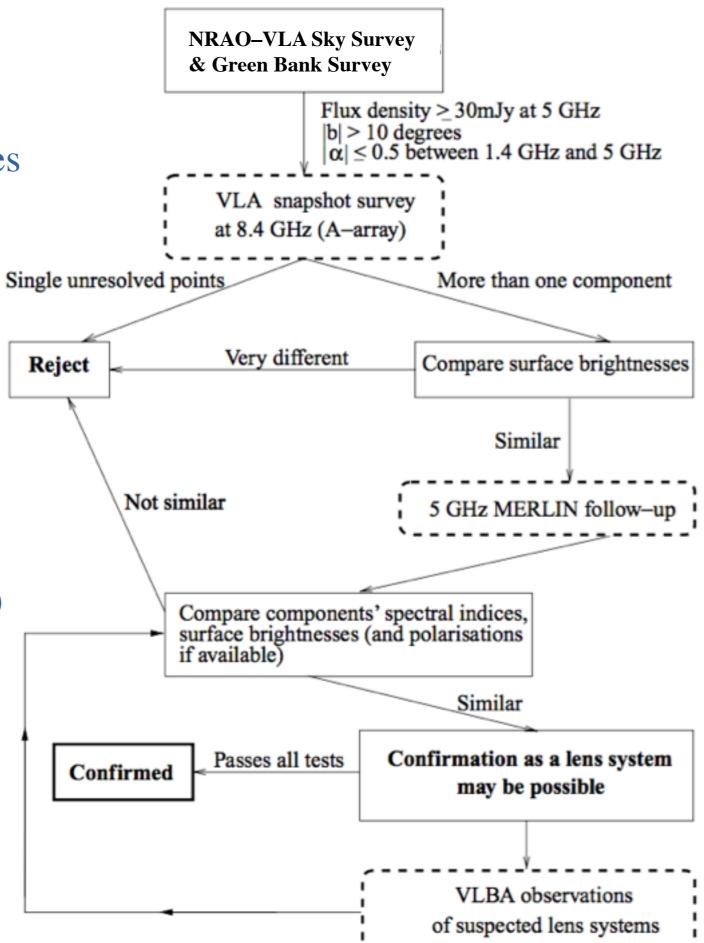

Rejecting lenses


• Invert the list above, i.e., Different color, different redshift, variations uncorrelated, different line profile, no lens galaxy, no arc-like morphology, no parity flips in 3+ image systems, poor model agreement, etc.

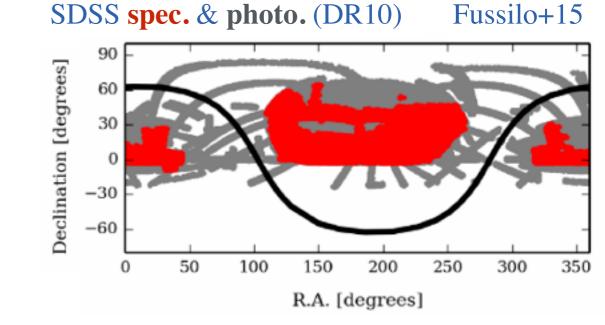

CASTLeS (Kochanek+98)

- Online repository of HST and radio data as well as refs for lens systems:
 - https://www.cfa.harvard.edu/castles/
 - 100 Multiple Imaged Systems (and 18 binary QSOs)
- Original CASTLeS project: HST H, V and I imaging of ~40 known lenses
 - Collecting information including redshifts
 - Modeling lenses to determine reliability
- As lens samples started to grow in the early 2000s they tried to keep up
 - Last paper reference is from 2006


PG 1115+080 (
$$z_s = 1.72, z_l = 0.31$$
)

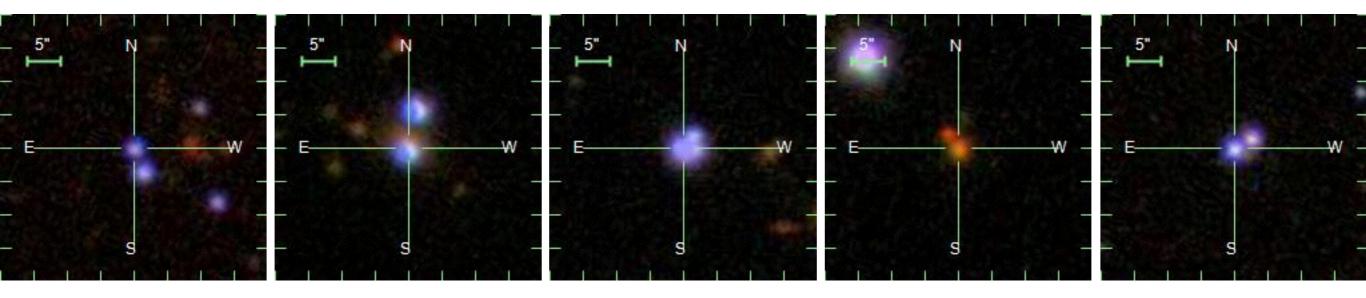

B 1030+074 ($z_s = 1.54, z_l = 0.60$)

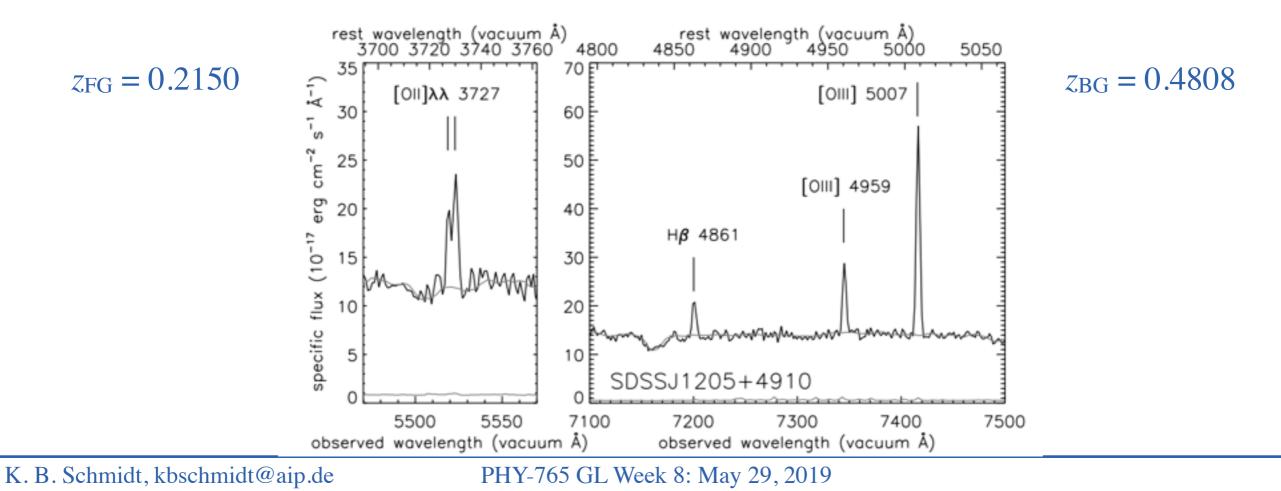
K. B. Schmidt, kbschmidt@aip.de


CLASS (Browne+03)

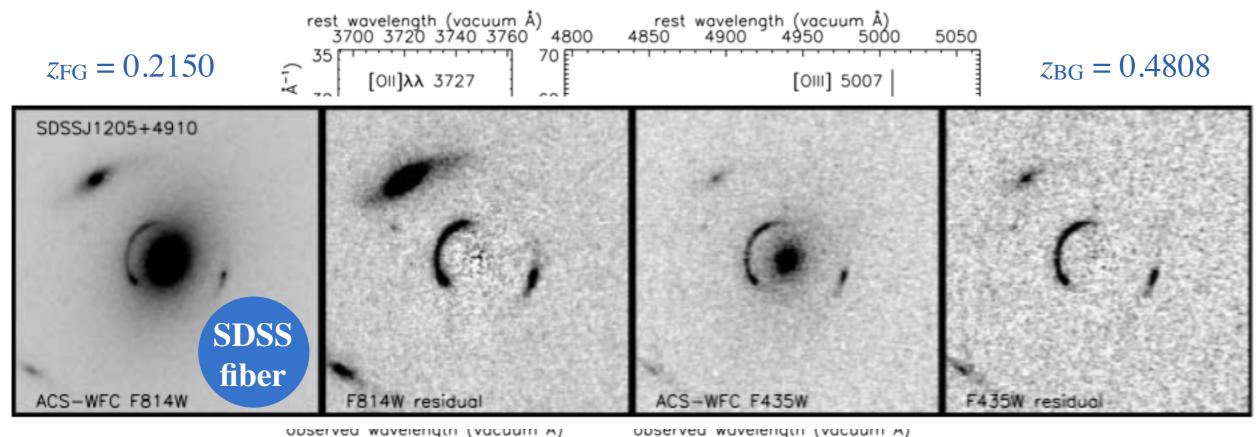
- Lensed flat f_v spectrum radio sources
- 16503 sources observed with VLA
- Cut on spectral flatness (color)
- Cut on flux densities (brightness)
- Detail VLA observations
 - Multi component morphology?
 - image SB different (< ×4)
- High-resolution follow-up (<0.05")
 - non-lens morphology revealed
 - image spectral index different
 - image polarization different
- Final sample contains 22 lenses
- Point source lensing rate:
 - $1:690 \pm 190$

SDSS.org


- Survey(s) of >10000 deg² (1/4 of the sky)
 - w 2.5 telescope at Apache Point Observatory
- SDSS I/II (2000-2008)
 - ugriz broad band imaging (multi-epoch)
 - optical spectra of more than 700000 objects
- SDSS III (2008-2014)
 - Cont. ugriz and spec. mapping after upgrade
 - new instruments:
 - High-z (BOSS)
 - Milky Way (SEGUE-2 and APOGEE IR spectroscopy)
 - Exoplanets (MARVELS)
- SDSS IV (2014-2020)
 - Focus on eBOSS, APOGEE-2 and MaNGA (IFU spectroscopy)
- Currently there have been 14 data releases from SDSS
- >1.5×10⁵ (10⁶) spectroscopic (candidate) quasars from DR10 (Richards+15)
- Millions of galaxies with spectra and imaging


SDSS Lenses - QSOs (Oguri+06/Inada+12)

- SQLS presents quasar lenses found starting from $>10^5$ spec. SDSS QSOs
- Base their selection on either *morphology* ($\theta \leq 2.5$ ") or *color* ($\theta \geq 2.5$ ")
 - Morphological selection: Extended (non-PSF) sources with QSO spectrum
 - Color selection: Nearby objects with similar colors to QSO in 4 SDSS colors
- Perform extensive follow-up with various spectrographs and imagers
- <u>http://www-utap.phys.s.u-tokyo.ac.jp/~sdss/sqls</u> contains 62 lenses


SDSS Lenses - Gal-Gal (Bolton+06)

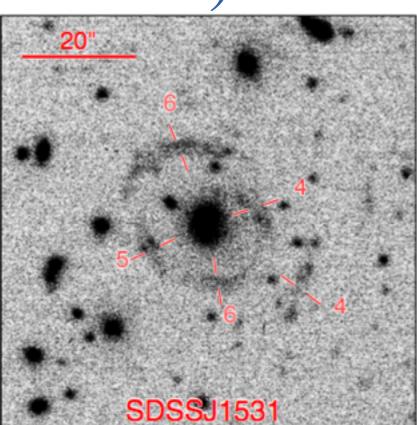
- HST imaging snapshot program looking for galaxy-scale lenses in SDSS
- Galaxies for follow-up selected from SDSS spectra
 - Subtract PCA SDSS pipeline redshift fit components
 - Search for emission lines with z > z(main galaxy) within 3" SDSS fiber radius

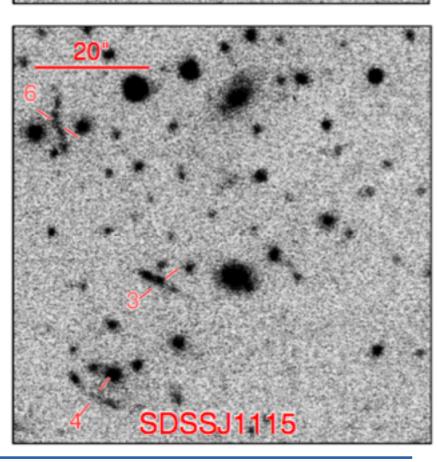
SDSS Lenses - Gal-Gal (Bolton+06)

- HST imaging snapshot program looking for galaxy-scale lenses in SDSS
- Galaxies for follow-up selected from SDSS spectra
 - Subtract PCA SDSS pipeline redshift fit components
 - Search for emission lines with z > z(main galaxy) within 3" SDSS fiber radius
- Measure velocity dispersion σ for such spectra to get θ_E assuming an SIS
 - Followed up the candidates with larger θ_E to increase lensing chance
- Auger+09 presents 85 definite galaxy-scale lenses from SLACS

K. B. Schmidt, kbschmidt@aip.de

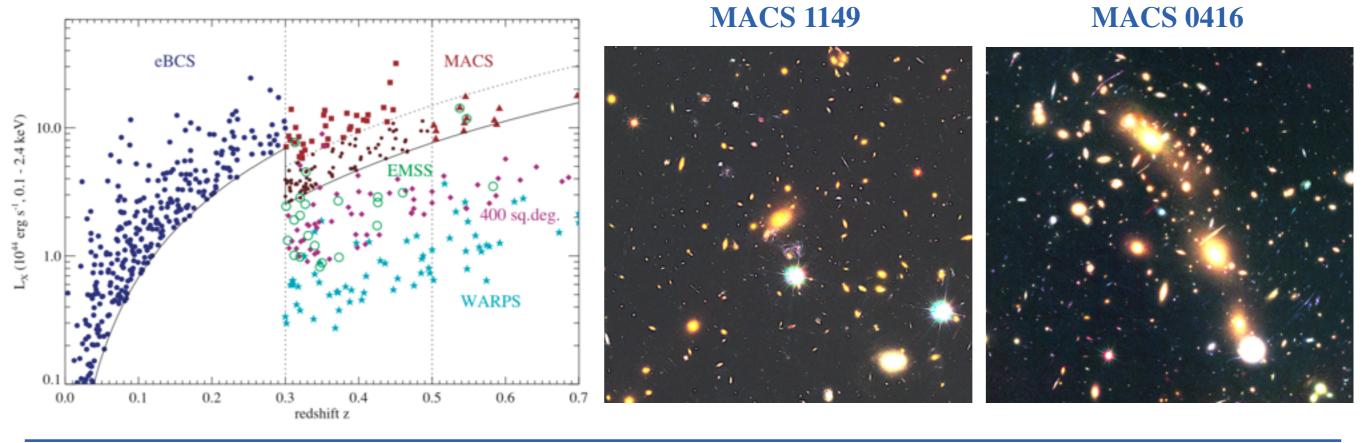
PHY-765 GL Week 8: May 29, 2019


A. Bolton (UH IfA) for SLACS and NASA/ESA						
			10 m		19 19	
					100 000-001 right dialog	
1999 No. 199	S 5			1 2 1	1	
					No Ma	
SOUL OFFICERS ATTACKS ADDRESS SOUL	20041-0113 07-0120 27-0101	1000 JHCH-1010 JH-0103 JH-0104	1011 Jack 4000 11-0.03 gl-0.00	100 200 -0+10 11-124 10-5330		
			0 0			
		A CONTRACTOR	1		AA	
NON 2142-122 21-2158 (2-6735 NON	2101-040 01-040 20-034	1005 J010-000 07-0144 - 0-0304	1000 JUDI-0000 11-0104 12-010	505 (150+442 (1+0.98) (0+0.815	NON 2017-000 21-010 2-0207	
	19 100				· · · ·	
NON (1020-000 (1-0-00) (2-0-01) (1-0-00)						
		and the second second				
			\bigcirc			
1010 (HET-011) (T+0.00 (2+0.10+ 1016	200+00 (-025 4-0.01	1010 / 101 / 101 / 101 / 101 / 101	1016 (0+4+100 (1+-0.00) (0+-0.00)	505 (101-506) (1+526) (2+5 he	MINE 2009-003 (1-0.201 (2-0.811	
	- 1 - C			100 600	(1)	
		When states the second				
		Maria a				
NES (1471-3412 -0-6245 -0-6412 - 5855	/48-400 (-634 (-5%)	1000 program in-6215 id-6400	505 AURO-500* 17-0.000 10-0.000	NOR /100-1107 (1-0.00 (2-0.00)	NON-11-20-11-0-11-0-00-02-03-12-03-12	
		100 100	The Car	1		
MIN 2108-0000 (1-1280 (2-180) 100				NEW AND THE THE ALL ADD DO		
NOT 2103-000					NO 201-004 -1-010 -0-004	

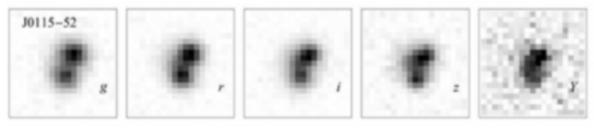

K. B. Schmidt, kbschmidt@aip.de

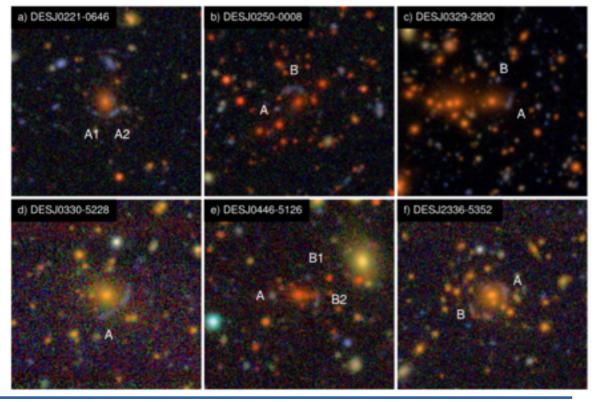
PHY-765 GL Week 8: May 29, 2019

SDSS Lenses - Arcs (Hennawi+08)


- Targeting richest SDSS clusters with deep follow-up
 - Wisconsin-Indiana-Yale NOAO 3.5m (WYIN)
 - University of Hawaii 88 inch (UH88)
- Target clusters from 8000deg² (DR5)
 - Selected with RCS algorithm (Gladders & Yee 2005)
 - have red sequence of early type galaxies
 - create over densities in position, mag and color space
- ~2×10⁴ massive galaxy clusters at $0.05 < z_{\text{photo}} < 0.6$
- Follow-up imaging visually inspected for arcs
- Resulted in 16(+12) new lensing clusters
 - 240 candidates followed up

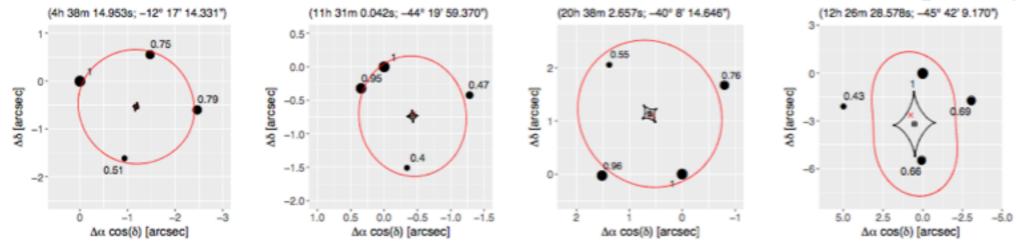
Clusters - MACS (Ebeling+01/10)


- Not actually a lensing survey \rightarrow Massive cluster survey
- High-z X-ray luminous clusters selected from ROSAT bright source catalog
 - Followed up spectroscopically to confirm cluster redshifts
- 124 spec. confirmed clusters 0.3 < z < 0.7
 - http://www.ifa.hawaii.edu/~ebeling/clusters/MACS.html
- Selected for HFF, GLASS, CLASH, RELICS etc.



K. B. Schmidt, kbschmidt@aip.de

DES - STRIDES


- DES: The Dark Energy Survey (2013-2018)
 - Imaging 5000deg² of the southern sky in grizY
- STRIDES: STRong lensing Insight in the Dark Energy Survey:
 - Aims at ~100 new lenses from DES
- Agnello+15: 2 lensed QSOs
 - QSO candidates based on DES+WISE colors
 - Using non-PSF morphology as indicator of lensing
 - Follow-up spectroscopy to confirm candidates
- Agnello+18: 4 QSO lenses and ~100 cand.
 - Scanned 5000 deg²
 - Using 5 methods incl. morphology and color
- Nord+16: 6 cluster lenses (3 new)
 - Visual inspection of imaging 250deg²
 - Relying on color and morphology
 - Gemini spectroscopic follow-up

Gaia

- ESA mission to map our galaxy - Gaia collaboration+16 & 18
- DR2 came out April 2018:
 - 1.7×10^9 sources with positions
 - 1.3×10^9 sources with parallaxes
- Krone-Martins+18
 - Crossmatch Gaia DR2 to existing QSO catalogs from WISE & SDSS
 - Look for close pairs (<6")
 - Used machine learning method to assign lensing probability
 - Modeled the lenses as SIEs + external shear to confirm lens morphology

• Lemon+18 crossmatched Gaia DR2 to SDSS and PS1 and found 24 new lenses.

Predicting numbers of QSO lenses

- Oguri & Marshall+10 aimed at predicting number of lenses
- Focus on multi-epoch data (potentially enabling time-delay measurements)
- Assume lens galaxies are ellipticals with SIE surface mass density (κ)
- They formulate the lensing rate (probability) as an integral over $d\theta$ and dz
- This can be integrated over the survey volume and source luminosity functions
- Integrating this over redshift interval provides estimate for N_{lenses}

Survey	QSO (detected)		QSO (measured)	
	N _{non-lens}	N _{lens}	N _{non-lens}	$N_{\rm lens}$
SDSS-II	1.18×10^{5}	26.3 (15 per cent)	3.82×10^{4}	7.6 (18 per cent)
SNLS	9.23×10^{3}	3.2 (12 per cent)	3.45×10^{3}	1.1 (13 per cent)
$PS1/3\pi$	7.52×10^{6}	1963 (16 per cent)	-	_
PS1/MDS	9.55×10^{4}	30.3 (13 per cent)	3.49×10^{4}	9.9 (14 per cent)
DES/wide	3.68×10^{6}	1146 (14 per cent)	-	_
DES/deep	1.26×10^{4}	4.4 (12 per cent)	6.05×10^{3}	2.0 (13 per cent)
HSC/wide	1.76×10^{6}	614 (13 per cent)	-	_
HSC/deep	7.96×10^{4}	29.7 (12 per cent)	4.30×10^{4}	15.3 (13 per cent)
JDEM/SNAP	5.00×10^{4}	21.8 (12 per cent)	5.00×10^{4}	21.8 (12 per cent)
LSST	2.35×10^{7}	8191 (13 per cent)	9.97×10^{6}	3150 (14 per cent)

 $(\dots) =$ percentage quads

K. B. Schmidt, kbschmidt@aip.de

So in summary...

- Searching for gravitational lensing is an ongoing endeavor
 - A 'shopping list' tailored for your survey is a good starting point
- Large data-sets and extensive follow-up is needed to overcome lens-rarity
- Focused on a few selected methods and surveys including:
 - Literature sample selection and follow-up
 - Radio sources
 - SDSS QSO and arc searches
 - DES QSO and arc searches
 - Cluster searches
- Current and future surveys have the potential to reveal thousands of GLs