

PHY-765 SS19 Gravitational Lensing Week 7

Magnifying Sources

Kasper B. Schmidt

Leibniz-Institut für Astrophysik Potsdam (AIP)

Last week - what did we learn?

• Expressed the time delay between multiple images of a lens:

$$\Delta t = \Delta t_{\text{Geometry}} + \Delta t_{\text{Shapiro}}$$

$$\Delta t = rac{D_{
m L}D_{
m S}}{cD_{
m LS}} \left[rac{\left(oldsymbol{ heta} - oldsymbol{eta}
ight)^2}{2} - rac{\Phi(oldsymbol{ heta})}{c^2}
ight]$$

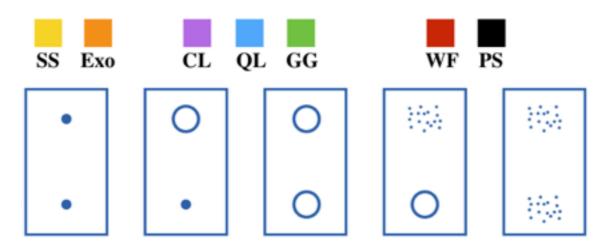
• For the point mass lens we saw that the difference between two images is

$$t_{+} - t_{-} \simeq -(1 + z_{\rm L}) \frac{D_{\rm L} D_{\rm S}}{c D_{\rm LS}} 2c^2 \theta_E \beta$$

- This enabled us to predict the right order of appearance of SN Refsdal
 - Looked at the full lens model precisions and actual re-appearance
- Described how time delays are also useful for
 - Lens model improvements
 - Determining cosmological parameters (H₀)

The aim of today

- Explore the third consequence of the lens equation: magnification
- Describe magnification in terms of the Jacobian
- Define magnification, shear, convergence (again), and parity of images
- Consider how images are magnified in the point mass lens and SIS/CIS
- Applications of magnification
 - Mapping the mass distribution in lenses
 - Finding high-redshift galaxies



Surface Brightness Conservation

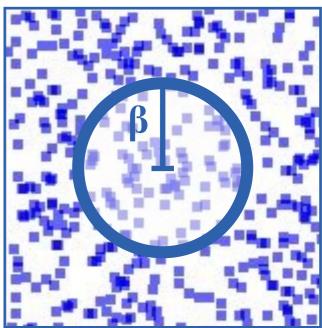
• Surface brightness: the flux density per solid angle

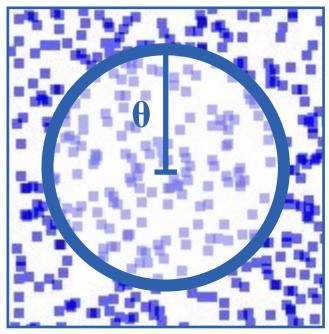
$$S = \frac{F[\mathrm{Jy}]}{d\Omega[\mathrm{deg}^2]}$$

- Received flux goes down for distant sources with r²
- Physical area observed in solid angle increases with r²
- So surface brightness of any source is independent of r
- Gravitational lensing does not change surface brightness
 - but can change the *effective* area observed of the source
- Lenses focus light from the background source
- Hence, $S(\boldsymbol{\beta}) = S(\boldsymbol{\theta})$
- And the increase in observed brightness is given by

$$\frac{S(\boldsymbol{\theta})d\Omega_{\text{lens plane}}}{S(\boldsymbol{\beta})d\Omega_{\text{source plane}}} = \frac{S(\boldsymbol{\theta})d\theta^2}{S(\boldsymbol{\beta})d\beta^2} = \frac{F(\boldsymbol{\theta})}{F(\boldsymbol{\beta})} = \frac{d\theta^2}{d\beta^2} = \mu$$

Source Plane





The Jacobian Matrix and Magnification

- The Jacobian Matrix is defined with indices $J_{ij} \equiv \partial f_i/\partial x_j$
- It describes the mapping between coordinate systems via its determinant

$$|\det \boldsymbol{J}| du dv = dx dy$$

- $\beta = \theta \alpha(\theta)$ describes the mapping between source and lens plane
- So the Jacobian matrix for gravitational lensing (linearized locally) is

$$\mathcal{A}(oldsymbol{ heta}) = rac{\partial oldsymbol{eta}}{\partial oldsymbol{ heta}} = egin{pmatrix} rac{\partial eta_i}{\partial heta_i} & rac{\partial eta_i}{\partial heta_j} \ rac{\partial eta_j}{\partial heta_i} & rac{\partial eta_j}{\partial heta_j} \end{pmatrix}$$

• Hence, the magnification μ (the ratio of the solid angles $d\theta$ & $d\beta$ - or fluxes) can be seen as a coordinate transformation, and expressed in terms of the Jacobian matrix:

$$\mu \equiv \det M(\boldsymbol{\theta}) = \frac{1}{\det \mathcal{A}(\boldsymbol{\theta})}$$

where the magnification tensor is defined as $M(\theta) = \frac{1}{\mathcal{A}(\theta)}$

The Jacobian Matrix and Magnification

- In week 3 we saw that $\alpha = \nabla \psi$
- Inserting this and the lens equation into the Jacobian matrix we get

$$\mathcal{A}(\boldsymbol{\theta}) = \begin{pmatrix} 1 - \frac{\partial \alpha_i}{\partial \theta_i} & -\frac{\partial \alpha_i}{\partial \theta_j} \\ -\frac{\partial \alpha_j}{\partial \theta_i} & 1 - \frac{\partial \alpha_j}{\partial \theta_j} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\partial^2 \psi}{\partial \theta_i^2} & -\frac{\partial^2 \psi}{\partial \theta_i \partial \theta_j} \\ -\frac{\partial^2 \psi}{\partial \theta_j \partial \theta_i} & 1 - \frac{\partial^2 \psi}{\partial \theta_j \partial \theta_i} & 1 - \frac{\partial^2 \psi}{\partial \theta_j^2} \end{pmatrix} \equiv (\delta_{ij} - \boldsymbol{\Psi}_{ij})$$

• Where Ψ_{ij} is the distortion tensor defined as

$$oldsymbol{\Psi}_{ij} \equiv egin{pmatrix} \kappa + \gamma_1 & \gamma_2 \ \gamma_2 & \kappa - \gamma_1 \end{pmatrix}$$

- using the *convergence* (κ) and *shear* (γ)
- and that ψ is symmetric, i.e., $M_{ij} = M_{ji}$

- In week 3:
 - we defined the convergence as $\kappa(\pmb{\theta}) \equiv \frac{\Sigma(D_{\rm L}\pmb{\theta})}{\Sigma_{\rm cr}}$
 - and noted that the convergence satisfies the Poisson equation $\nabla^2 \psi = 2\kappa$
- So from the definition of Ψ_{ij} we can define:

$$\kappa \equiv \frac{1}{2} \left(\frac{\partial^2 \psi}{\partial \theta_i^2} + \frac{\partial^2 \psi}{\partial \theta_j^2} \right) \qquad \gamma_1 \equiv \frac{1}{2} \left(\frac{\partial^2 \psi}{\partial \theta_i^2} - \frac{\partial^2 \psi}{\partial \theta_j^2} \right) \qquad \gamma_2 \equiv \frac{\partial^2 \psi}{\partial \theta_i \partial \theta_j}$$

Giving that the magnification of a lensed source is given by

$$\mu = \frac{1}{(1-\kappa)^2 - \gamma^2}$$
 ; $\gamma^2 \equiv \gamma_1^2 + \gamma_2^2$ (Exercise 2)

• From this the *tangential* and *radial* critical curves are defined

$$\mu_{\mathsf{t}} = \frac{1}{\lambda_{\mathsf{t}}} = \frac{1}{1 - \kappa - \gamma} \qquad \mu_{\mathsf{r}} = \frac{1}{\lambda_{\mathsf{r}}} = \frac{1}{1 - \kappa + \gamma}$$

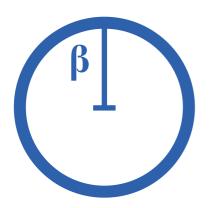
• Consider a line of sight along which $\gamma_1 = \gamma_2 = 0$ and $\kappa \neq 0$ and small, then

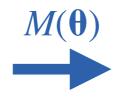
$$\mathcal{A}(\boldsymbol{\theta}) = \delta_{ij}(1-\kappa) \quad \Rightarrow \quad \boldsymbol{\beta} = (1-\kappa)\boldsymbol{\theta}$$

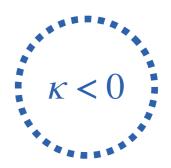
Dividing by $(1-\kappa)$ and Taylor expanding (κ is small) give $\theta = (1+\kappa)\beta$

$$\boldsymbol{\theta} = (1 + \kappa)\boldsymbol{\beta}$$

Source Plane







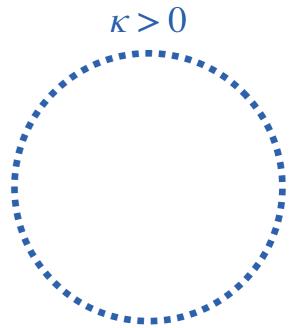
• Consider a line of sight along which $\gamma_1 = \gamma_2 = 0$ and $\kappa \neq 0$ and small, then

$$\mathcal{A}(\boldsymbol{\theta}) = \delta_{ij}(1-\kappa) \quad \Rightarrow \quad \boldsymbol{\beta} = (1-\kappa)\boldsymbol{\theta}$$

Dividing by $(1-\kappa)$ and Taylor expanding (κ is small) give $\theta = (1+\kappa)\beta$

$$\boldsymbol{\theta} = (1 + \kappa)\boldsymbol{\beta}$$

Source Plane



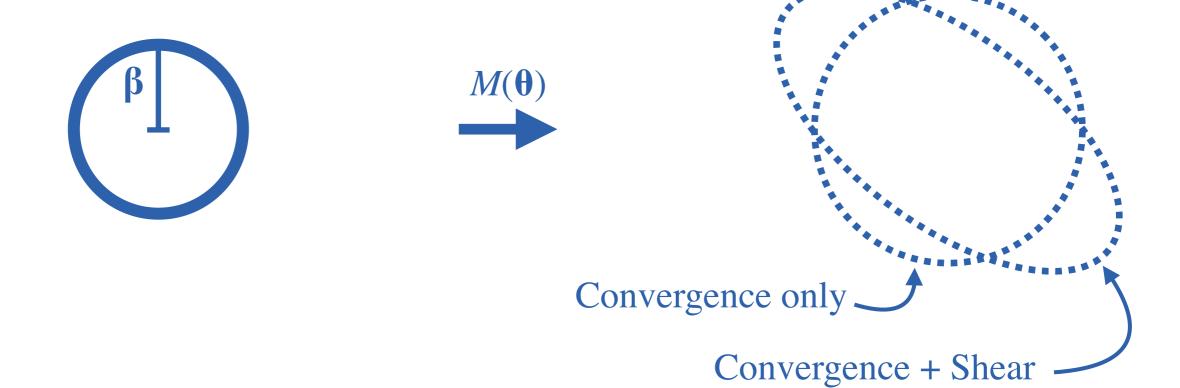
• Consider a line of sight along which $\gamma_1 = \gamma_2 = 0$ and $\kappa \neq 0$ and small, then

$$\mathcal{A}(\boldsymbol{\theta}) = \delta_{ij}(1-\kappa) \quad \Rightarrow \quad \boldsymbol{\beta} = (1-\kappa)\boldsymbol{\theta}$$

Dividing by $(1-\kappa)$ and Taylor expanding (κ is small) give $\theta = (1+\kappa)\beta$

$$\boldsymbol{\theta} = (1 + \kappa)\boldsymbol{\beta}$$

Source Plane



Magnification for the point mass lens

- From the point mass lens we have that (week 3): $\psi(\theta) = \frac{\theta_{\rm E}^2}{c^2} \ln \theta$
- Away from the origin of the point mass κ disappears so μ only depends on

$$\gamma_{1} = -\frac{\theta_{\rm E}^{2}}{\theta^{4}} \left(\theta_{x}^{2} - \theta_{y}^{2}\right)$$

$$\gamma_{2} = -\frac{2\theta_{\rm E}^{2}\theta_{x}\theta_{y}}{\theta^{4}}$$
(Exercise 3.1)

Resulting in

$$\mu = rac{1}{1 - rac{ heta_{
m E}^4}{ heta^4}}$$

(Exercise 3.2)

- For perfect alignment β =0 the Einstein ring formally has $\mu \rightarrow \infty$
 - Practically neither source nor lens is ever a point mass
 - Total magnification is not infinite but large

Magnification for the Isothermal Sphere

• For the IS with a core we have that (week 4):

$$oldsymbol{lpha} = rac{ heta_0}{ heta^2} \left[\sqrt{ heta^2 + heta_{
m core}^2} - heta_{
m core}
ight] oldsymbol{ heta}$$

• But $M(\theta)$, i.e. κ , γ_1 and γ_2 are just (linear comb.) of first derivatives of α so we can derive the magnification calculating these

$$\mu = \left[\left(1 - \frac{\theta_0}{2\sqrt{\theta^2 + \theta_{\text{core}}^2}} \right)^2 - \frac{\theta_0^2 \left(2\theta_{\text{core}}\sqrt{\theta^2 + \theta_{\text{core}}^2} - 2\theta_{\text{core}}^2 - \theta^2 \right)^2}{4\theta^4 \left(\theta^2 + \theta_{\text{core}}^2 \right)} \right]^{-1}$$

• Using that

$$\kappa = \frac{\theta_0}{2\sqrt{\theta^2 + \theta_{\text{core}}^2}}$$

$$\gamma^{2} = \frac{\theta_{0}^{2} \left(2\theta_{\text{core}} \sqrt{\theta^{2} + \theta_{\text{core}}^{2}} - 2\theta_{\text{core}}^{2} - \theta^{2}\right)^{2}}{4\theta^{4} \left(\theta^{2} + \theta_{\text{core}}^{2}\right)}$$

Magnification for the SIS

• If $\theta_{core} = 0$ in the expression of μ for the (C)IS we get that

• Resulting in

$$\mu = rac{1}{1 - rac{ heta_0}{| heta|}}$$

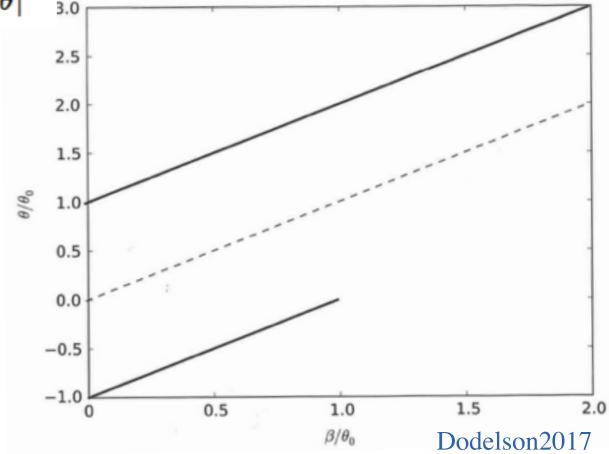
- So if $|\theta| < \theta_0$ then $\mu < 0$
- For $\beta < \theta_0$ two images appear (week 4)

$$\theta_+ = \beta + \theta_0$$
 $\theta_- = \beta - \theta_0$

• With

$$\mu(\theta_{+}) = +\frac{\theta_{0} + \beta}{\beta}$$

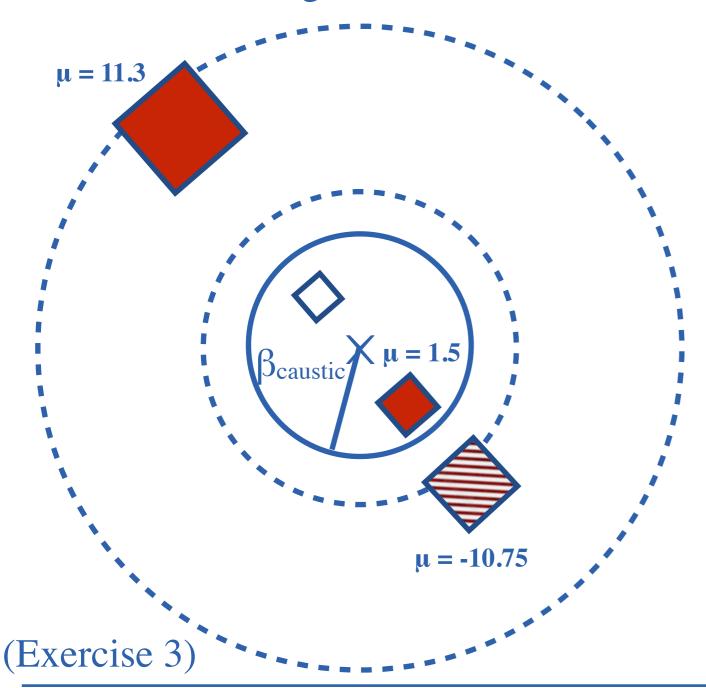
$$\mu(\theta_{-}) = -\frac{\theta_{0} - \beta}{\beta}$$

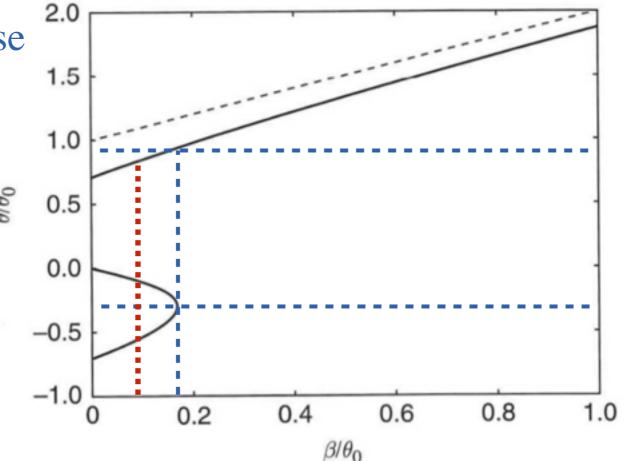


Caustics and Critical Curves Pt. 2

• For the CIS we were considering the case

• The number of images changes by 2 when crossing the caustic



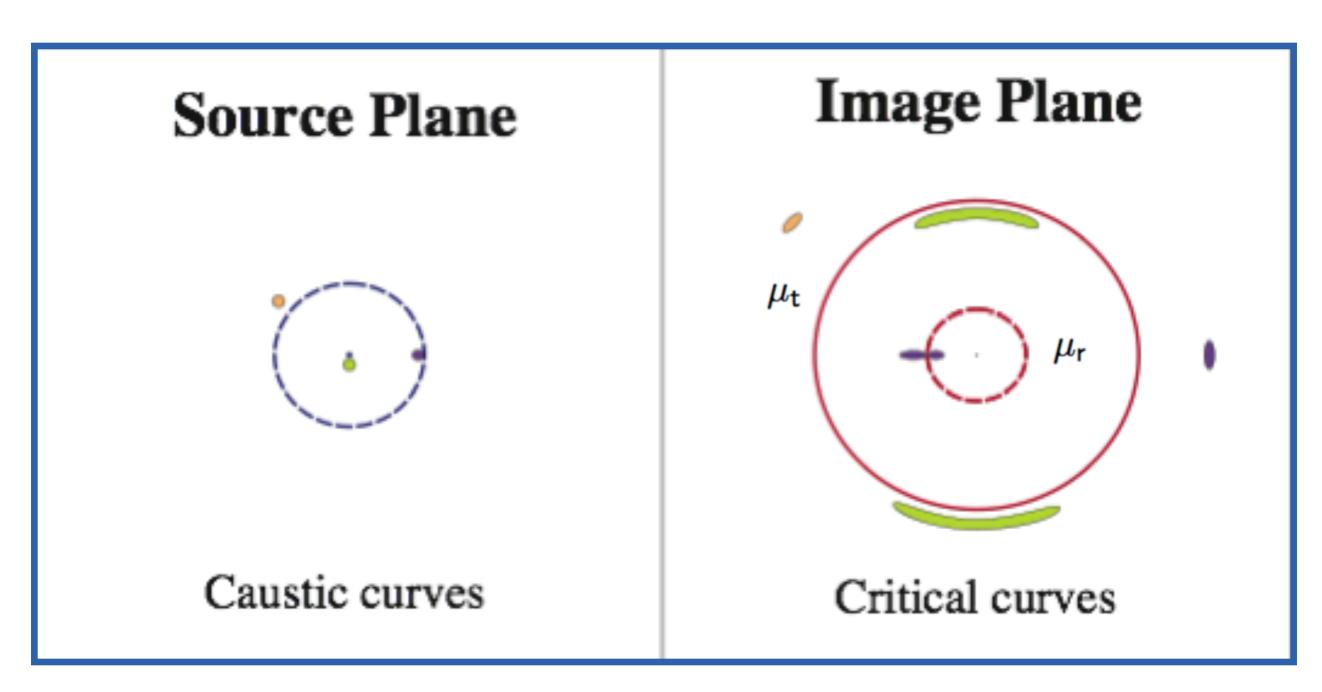


- Calculating magnifications of images and scaling accordingly
- Absolute magnitude not known
- So the *observables* are image positions and flux ratios for multiple images not μ

Dodelson2017

Caustics and Critical Curves Pt. 2

• The CIS with shear and convergence



gravitationallensing.pbworks.com

Caustics and Critical Curves Pt. 2

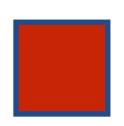
- So what about all the quads (and doubles) we are seeing?
- Consequence of asymmetric mass distribution
 - The Singular Isothermal Ellipsoid (SIE) attempts to account for this
 - Roughly the SIS added an asymmetric potential (or external shear)

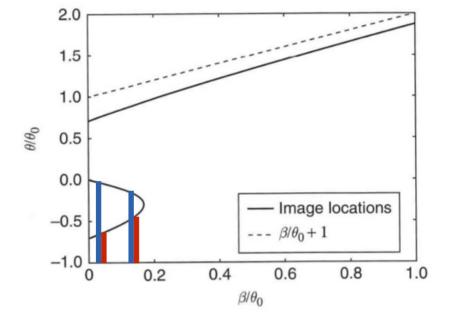
	Einstein Cross	Cusp Caustic	Fold Caustic
Source Plane			
Image Plane			

gravitationallensing.pbworks.com

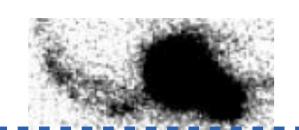
Parity

- Critical curves are the dividing lines between
 - Images with $\mu = \det M < 0$ have negative parity
 - Images with $\mu = \det M > 0$ have positive parity





Symmetrical lens so bottom of tail touches connecting (dashed) line



Symmetrical lens so also tail on connecting (solid) line

→ image horizontally flipped (around dashed axis)

An image closer to the lens (in the source plane) appear farther away in the lens plane

This flip is captured by u<0

Direct Determination of Magnification

- The observable for magnification is the flux ratio
- This translates into a difference in magnitudes

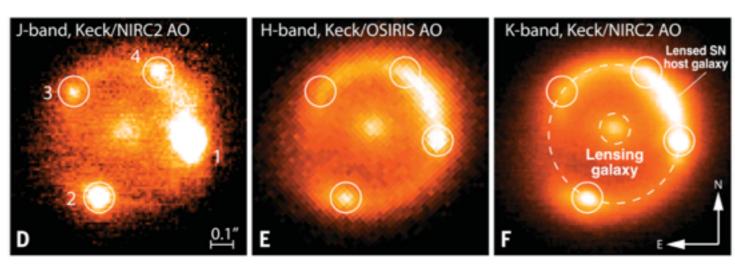
$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{F_1}{F_2} \right) = -2.5 \log_{10} (\mu)$$

• To directly detect magnification you want to compare m_{intrinsic} & m_{observed}

- Goobar et al. (2017) presented a lensed SNIa (as mentioned in Week 5)
- Using that SNIa is standardizable they get mintrinsic, SNIa
 - Leading to $\mu \sim 52$ ($\Delta m = -4.3 \pm 0.2$ mag)
 - Independent of lens model and cosmology ($m_{intrinsic,SNIa}$ at $z_{SNIa} = 0.409$)

Goobar et al. (2017)
$$z_{SNIa} = 0.409$$

$$z_{lens} = 0.216$$

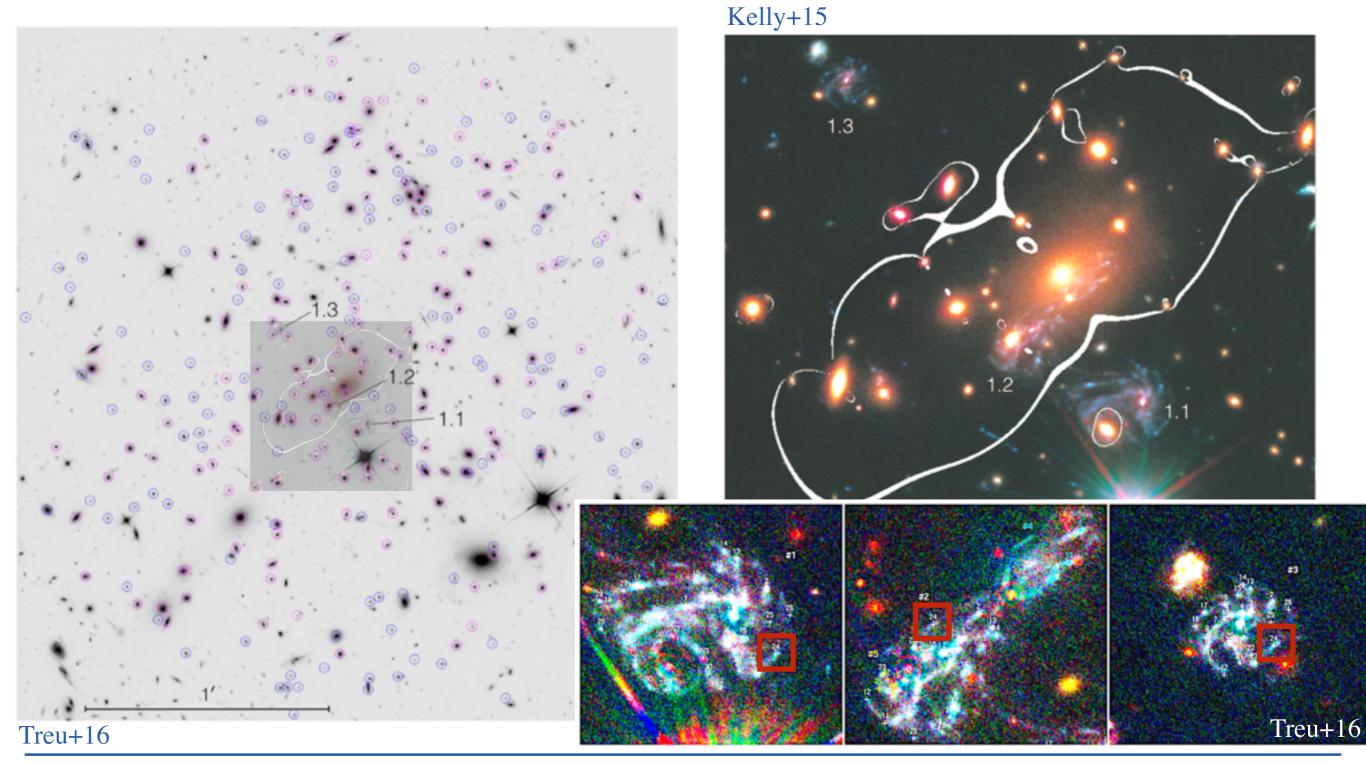


Determining the Mass of Lenses

- Determining the mass of a lens: use μ as predictor of the lens potentail
 - 1. Lens standard candle → Not many lensed standard candles
 - 2. Remove the lens → Lenses stationary (except for sun & microlenses)
 - 3. Compare samples of galaxies
 - 4. Use sets of multiple images in large (massive) systems
- To use sample statistics (3) you need
 - Magnitudes of galaxies being lensed
 - Magnitude of a similar sample of galaxies not being lensed
- This provides Δm between the samples estimating $\sim \mu$ and hence M_{lens}
- However, numbers of strongly lensed ($\theta \le \theta_E$) galaxies per lens is small
- Hence, you have to observe galaxies outside θ_E , i.e., weak lensing regime
- Increasing area to O(arcmin²) pushes S/N above a few
 - Annuli give estimates of surface density $\Sigma_{lens} = \Sigma_{cr} \kappa$ as a function of r

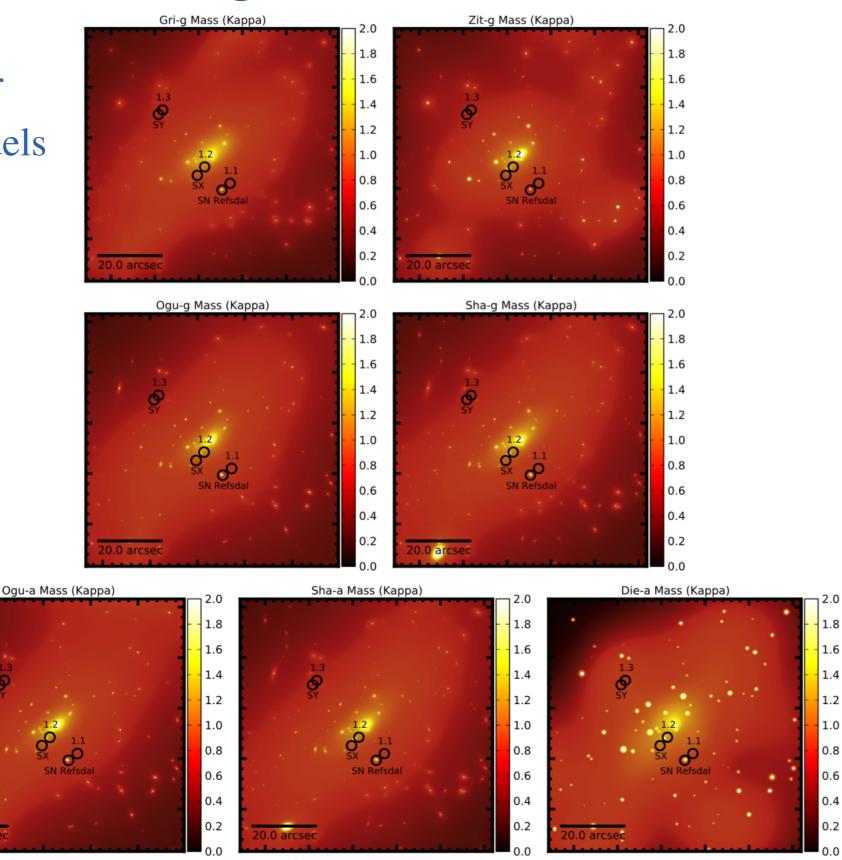
Determining the Mass of Lenses

• The position of multiple images (4), their magnification and morphology, can be used to constrain mass maps of lenses (no reference sample needed).



Determining the Mass of Lenses

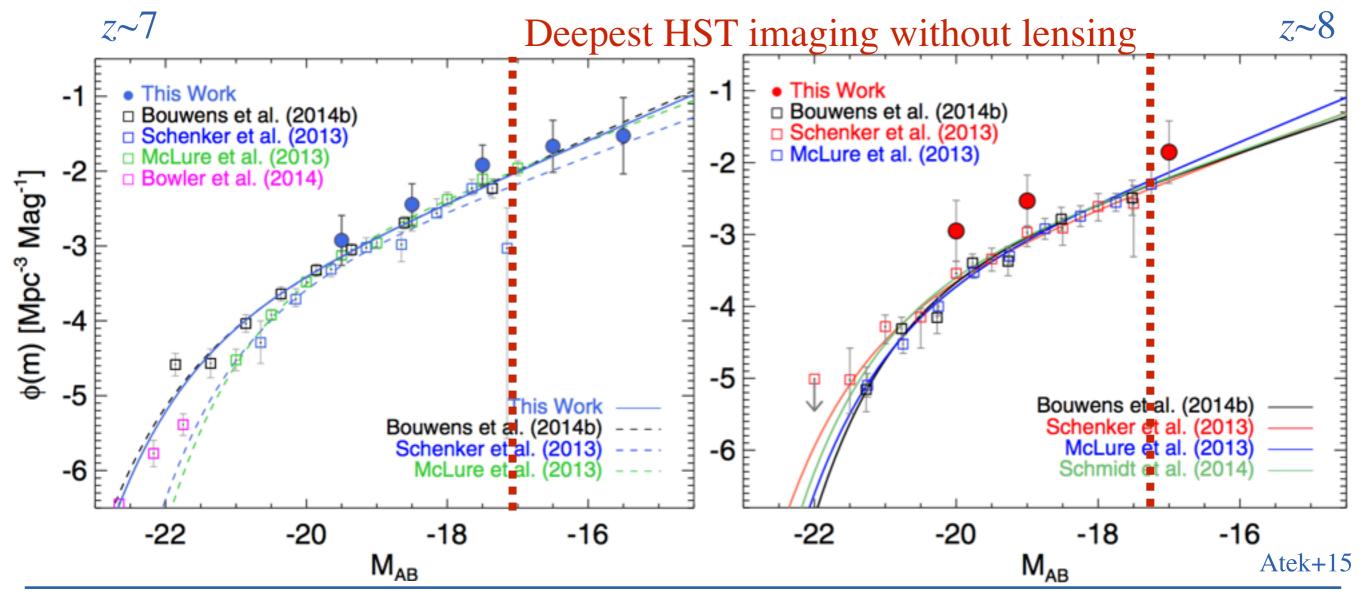
Mass (κ) maps for different lens models



Treu+16

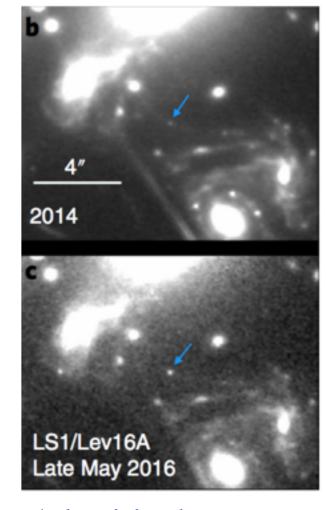
Finding Lensed High-z Galaxies

- The magnification of sources enable detection of faint & distant sources
- High-z galaxies are faint both because of intrinsic brightness and distances
- Even the deepest Hubble images (m~29) do not reach these depths
- GL to the rescue: $\mu \sim 10$ implies $\Delta m = 2.5$ mag

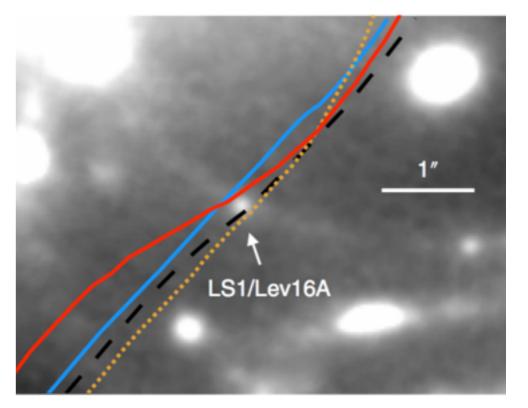


Lensed Star 1

- Dense monitoring of MACS1149 due to SN Refsdal
- New transient appeared in the host of SN Refsdal in 2016
 - Not associated with SN Refsdal
 - Light curve different from any known (super)nova
- True critical curve is indicated by $\mu \rightarrow \infty$
 - hence extreme magnification can occur
- Leading theory:
 LS1 is a blue super giant crossing the caustic at z=1.49 behind MACS1149 being magnified by more than a factor 2000.



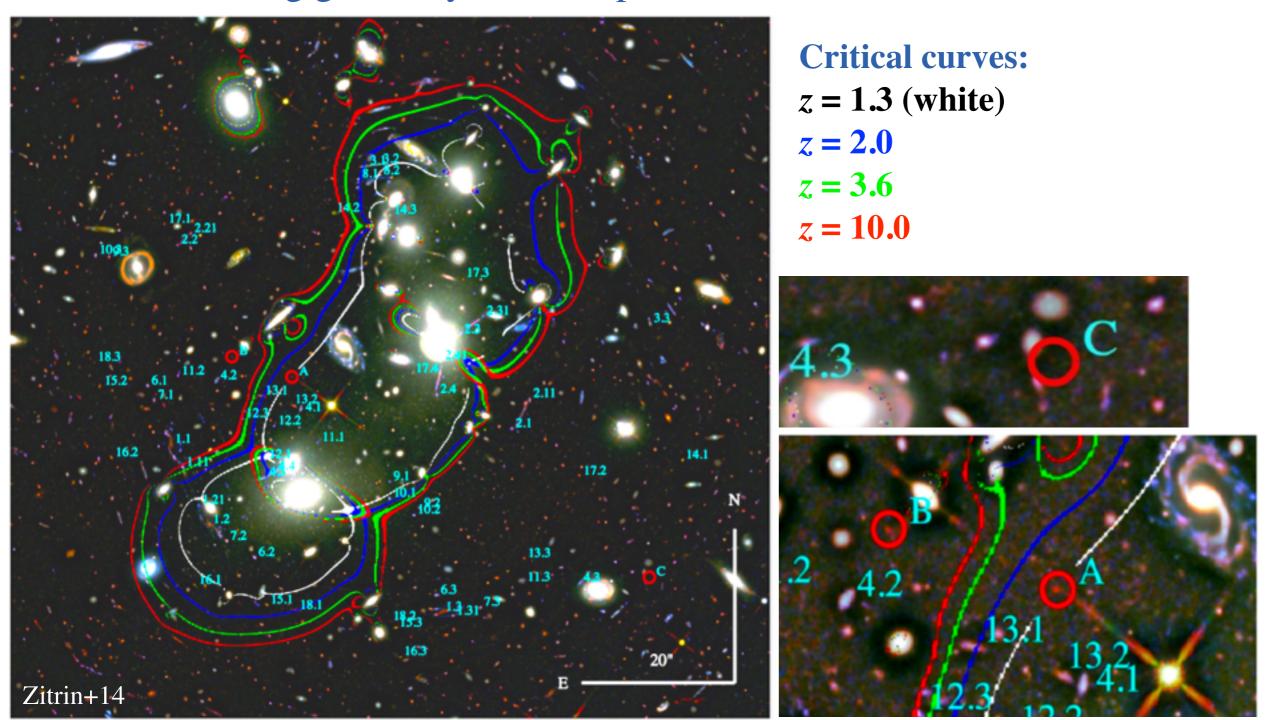
Lens model critical curves



Kelly+18

Confirming High-z Galaxies

- The standard way to confirm high-z galaxies is Ly α in spectrum
- But the lensing geometry can also provide confirmation



So in summary...

- Lensed sources are magnified, i.e. apparent fluxes increased (light focused)
- The magnification is as the inverse determinant of the Jacobian matrix

$$\frac{F(\boldsymbol{\theta})}{F(\boldsymbol{\beta})} = \mu \equiv \det M(\boldsymbol{\theta}) = \frac{1}{\det A(\boldsymbol{\theta})}$$

• It can be expressed in terms of the convergence, κ , and the shear, γ

$$\mu = \frac{1}{(1-\kappa)^2 - \gamma^2} \quad ; \quad \gamma^2 \equiv \gamma_1^2 + \gamma_2^2$$

- Point mass lens:

$$\mu = rac{1}{1-rac{ heta_{
m E}^4}{ heta^4}}$$

- SIS:

$$\mu = \frac{1}{1 - \frac{\theta_0}{|\theta|}}$$

- CIS:

$$\mu = \left[\left(1 - \frac{\theta_0}{2\sqrt{\theta^2 + \theta_{\text{core}}^2}} \right)^2 - \frac{\theta_0^2 \left(2\theta_{\text{core}}\sqrt{\theta^2 + \theta_{\text{core}}^2} - 2\theta_{\text{core}}^2 - \theta^2 \right)^2}{4\theta^4 \left(\theta^2 + \theta_{\text{core}}^2 \right)} \right]^{-1}$$

Convergence only _

Convergence + Shear

• Magnification and geometry useful for lens mass measurements and modeling, and for faint object (high-z) searches.