

PHY-765 SS19 Gravitational Lensing Week 6

Time Delays

Kasper B. Schmidt

Leibniz-Institut für Astrophysik Potsdam (AIP)

Last week - what did

- Looked at multiple images for:
 - Point mass lens
 - Isothermal Sphere (IS)
 - Singular Isothermal Sphere (SIS)
 - Cored Isothermal Sphere (CIS)
- Introduced caustics (source plane) and critical curves (lens plane)
- Multiple images of SN refsdal and its host

 θ/θ_0

The aim of today

- Explore the second consequence of the lens equation: **time delays**
- Express time delay between the two images of the point mass lens
- Present examples of the usefulness of time delays
 - Testing GR predictions
 - The SN Refsdal re-appearance
 - Determining H₀ (COSMOGRAIL & H0LiCOW)

Time Delays

• Time delay is a natural consequence of the appearance of multiple images

 $\Delta t = \Delta t_{\rm Geometry} + \Delta t_{\rm Shapiro}$

Shapiro time delay

- "The delay of light as it passes through a gravitational potential well"
- In week 1 we were considering the GR line element for a photon

$$ds^2 = g_{00} \, dt^2 + g_{ij} \, dx^i \, dx^j = 0$$

• Aligning light rays along the *z*-direction and again using the metric

$$g_{00} = c^2 \left(1 - \frac{2GM}{rc^2} \right) \qquad g_{ij} = -\delta_{ij} \left(1 + \frac{2GM}{rc^2} \right)$$

• By Taylor expansion we find that

$$dz = c \, dt \left[\frac{1 - 2GM_{\odot}/rc^2}{1 + 2GM_{\odot}/rc^2} \right]^{1/2} \simeq c \, dt \left[1 - \frac{2GM_{\odot}}{rc^2} \right]$$

- So in the absence of gravity dz/dt = c, but with gravity dz/dt < c
- Shapiro (1964) suggested to use light deflection off Venus to measure this

K. B. Schmidt, kbschmidt@aip.de

9

 $\Delta t_{\mathrm{Shapiro}} = 200 \mu \mathrm{s}$

(Exercise 2)

dy

dx

Shapiro time delay

• Considering the 3D gravitational potential $\phi(z) = -MG/r$ we have

$$\Delta t_{\text{Shapiro}} = \frac{-2}{c^3} \int dz \,\phi(z) = -\frac{\Phi(\theta)}{c^2} \times \frac{D_{\text{S}} D_{\text{L}}}{D_{\text{LS}} c}$$
Where the expression $dz \simeq c \, dt \left[1 - \frac{2GM_{\odot}}{rc^2} \right]$
was divided by $1 - 2MG/rc^2$, Taylor expanded & integrated (see Exercise 2)

• And we introduced the *projected gravitational potential*

$$\Phi(\boldsymbol{\theta}) = \boldsymbol{\psi}(\boldsymbol{\theta})c^2 = \frac{4MGD_{\mathrm{LS}}}{D_{\mathrm{S}}D_{\mathrm{L}}} \ln |\boldsymbol{\theta}|$$

Depends on image position (light path)

Defined for the point mass in week 3

Geometric time delay

• The Geometric time delay caused by different path lengths for images

- By geometry the undeflected light path is just $D_u = D_S / \cos(\beta)$
- and the deflected light path is

 $D_{d} = D_{L} / \cos(\theta) + D_{LS} / \cos(\delta)$

Geometric time delay

• Combining these two expressions (and Taylor expanding cosines) we get

$$D_{\mathrm{d}} - D_{\mathrm{u}} = rac{D_{\mathrm{L}} D_{\mathrm{S}}}{D_{\mathrm{LS}}} rac{\left(oldsymbol{ heta} - oldsymbol{eta}
ight)^2}{2}$$

• Dividing by *c* turns this light path difference into a time difference

$$\Delta t_{ ext{Geometry}} = rac{D_{ ext{L}} D_{ ext{S}}}{c D_{ ext{LS}}} rac{\left(oldsymbol{ heta} - oldsymbol{eta}
ight)^2}{2}$$

Time delay

$$\Delta t = \Delta t_{\rm Geometry} + \Delta t_{\rm Shapiro}$$

• Inserting the expressions we have the combined time delay

Only depends on distances; no lens details

$$\Delta t = rac{D_{
m L} D_{
m S}}{c D_{
m LS}} \left[rac{\left(oldsymbol{ heta} - oldsymbol{eta}
ight)^2}{2} - rac{\Phi(oldsymbol{ heta})}{c^2}
ight]$$

Only depends on lens mass distribution

- Where the distances are given in co-moving distances
 - Add (1+*z*_L) factor in front to have angular diameter distances
- GL time delay analogy:
 - θ - β is "route"
 - $\Phi(\mathbf{\theta})$ is "traffic"

K. B. Schmidt, kbschmidt@aip.de

side note Time delay reveals Lens Equation

- If we insist on minimizing the time traveled by light rays
 - Light travels on null-geodesics
- Or in other words we invoke *Fermat's Principle*:

If S is the source and O the observer in a space time defined by a metric $g_{\mu\nu}$ and mass M, then a smooth null curve γ from S to O is a light ray (null geodesic) if, and only if, its arrival time τ at O is stationary under first-order variations of γ within the set of null curves from S to O, i.e., $\delta \tau = 0$

• So differentiating Δt with respect to the angle we have:

$$\frac{d}{d\theta^{i}} \left[\frac{\left(\boldsymbol{\theta} - \boldsymbol{\beta} \right)^{2}}{2} - \frac{\Phi(\boldsymbol{\theta})}{c^{2}} \right] = 0$$

• And since $\boldsymbol{\alpha} = \nabla \psi$ we have the lens equation $0 = \boldsymbol{\theta} - \boldsymbol{\beta} - \boldsymbol{\alpha}(\boldsymbol{\theta})$

• Hence, the lens equation is a 'manifestation' of Fermat's principle.

Time delay for the point mass lens

• For images 1 and 2 of a background source being lensed we have

$$t_1 - t_2 = (1 + z_{\rm L}) \frac{D_{\rm L} D_{\rm S}}{c D_{\rm LS}} \left(\left[\frac{\left(\boldsymbol{\theta}_1 - \boldsymbol{\beta}\right)^2}{2} - \frac{\Phi(\boldsymbol{\theta}_1)}{c^2} \right] - \left[\frac{\left(\boldsymbol{\theta}_2 - \boldsymbol{\beta}\right)^2}{2} - \frac{\Phi(\boldsymbol{\theta}_2)}{c^2} \right] \right)$$

• If the lens is a point mass and β much smaller than the Einstein radius

$$\theta_{\pm} \simeq \pm \theta_{\rm E} + \frac{\beta}{2}$$
 ($\beta \ll \theta_{\rm E}$) (cf. last week)

- And the geometrical time delay is insignificant (deflections ~identical)
 - I.e., $(\theta_+ \beta)^2 \sim (\theta_- \beta)^2$
- The main contribution to the time delay comes from the potential $\Phi(\theta)$
- Using the point mass lens expression for the gravitational potential

$$\Phi(\boldsymbol{\theta}) = \boldsymbol{\psi}(\boldsymbol{\theta})c^2 = \frac{4MGD_{\mathrm{LS}}}{D_{\mathrm{S}}D_{\mathrm{L}}}\ln|\boldsymbol{\theta}| = c^2\theta_E^2\ln|\boldsymbol{\theta}|$$

Time delay for the point mass lens

• We find that in the limit of small β (Taylor expanding ln)

$$\Phi(\boldsymbol{\theta}_{+}) - \Phi(\boldsymbol{\theta}_{-}) = c^{2}\theta_{E}^{2}\ln\left|\frac{\theta_{+}}{\theta_{-}}\right| \simeq 2c^{2}\theta_{E}\beta$$

• Therefore, for a point mass lens the time difference between two images (when the geometric time delay is insignificant) is

$$t_+ - t_- \simeq -(1 + z_{\rm L}) \frac{D_{\rm L} D_{\rm S}}{c D_{\rm LS}} 2\theta_E \beta$$

- Light passing closest to the lens (t_{-}) is delayed the most
- Thus, light from image θ_+ arrive first
- Characteristic light delays between the two images are of the order months to years for cosmological lens geometries (Exercise 3)

Kelly+2015

K. B. Schmidt, kbschmidt@aip.de

- The SN Refsdal data can be used to strengthen/improve cluster lens models
- Treu+2016 coordinated a "blind" modeling of the MACS1149 cluster
 - Models from Zitrin+, Diego+, Oguri+, Sharon+, Grillo+
- Prediction of re-appearance of SN Refsdal and time-delay estimates

• When MACS1149 Became re-observable ~Oct. 30 2015 (after Treu+2016 came out!) the hunt for the predicted re-appearance began.

• When MACS1149 Became re-observable ~Oct. 30 2015 (after Treu+2016 came out!) the hunt for the predicted re-appearance began.

K. B. Schmidt, kbschmidt@aip.de

http://hubblesite.org/newscenter/archive/releases/2015/08/video/

K. B. Schmidt, kbschmidt@aip.de

Estimating H₀ from time delays

- Time delay lenses can also be used for estimating H_0
- The $\Delta t_{Geometry}$ is proportional to path lengths, i.e., scales with $1/H_0$
- The $\Delta t_{Shapiro}$ is also proportional to the path lengths, i.e., scales with $1/H_0$
- Hence, for any gravitational lens $H_0(t_1-t_2)$ depends only on geometry

$$t_{1} - t_{2} = (1 + z_{\rm L}) \frac{D_{\rm L} D_{\rm S}}{c D_{\rm LS}} \left(\left[\frac{(\theta_{1} - \beta)^{2}}{2} - \frac{\Phi(\theta_{1})}{c^{2}} \right] - \left[\frac{(\theta_{2} - \beta)^{2}}{2} - \frac{\Phi(\theta_{2})}{c^{2}} \right] \right)$$

- Lens models provide β , θ and Φ (mass of lens) and predict H₀(t₁-t₂)
- This is compared to measurements of (t_1-t_2) from light curve monitoring

COSMOGRAIL & HOLiCOW

- COSmological MOnitoring of GRAvItational Lenses (www.cosmograil.org)
 - Imaging campaign to sample lensed QSO light curves
 - Time delay measurements [e.g., WFI J2033-4723 (Vuissoz+08), RXJ1132 (Suyu+13)]
- H₀ Lenses in COSMOGRAIL's Wellspring (www.h0licow.org)
 - Extending work from COSMOGRAIL with focus on estimating H_0
- H0LiCOW is focusing on 5 lensed QSOs
- First set of papers from 2017 focused on HE0435-1223
 - Bonvin+17, Wang+17, Rusu+17, Sluse+17

K. B. Schmidt, kbschmidt@aip.de

Light Cruve for HE0435-1223 images

https://www.youtube.com/watch?v=qoVQ8f5nVOw

K. B. Schmidt, kbschmidt@aip.de

Matching Fluxes and Obtain Δt

https://www.youtube.com/watch?v=qoVQ8f5nVOw

K. B. Schmidt, kbschmidt@aip.de

A good lens model is key

• The obtainable constraint on H_0 from comparing model-predicted $H_0(t_1-t_2)$ to observed (t_1-t_2) is set by model precision/accuracy

Suyu+2018

H₀ From HE0435-1223

• Then, comparing Δt (observed) with H₀ Δt (model) H₀ can be estimated

So in summary...

• Time delays are a natural consequence of appearance of multiple images

$$\Delta t = \Delta t_{\rm Geometry} + \Delta t_{\rm Shapiro}$$

• The Shapiro time delay is caused by gravitational potential ("traffic") $\Phi(\theta) = D_{\rm S} D_{\rm L}$

$$\Delta t_{\text{Shapiro}} = \frac{1}{c^2} \wedge \frac{D_{\text{LS}} c}{D_{\text{LS}} c}$$
The Geometric time delay is caused by differences in path lengths ("route")
$$\Delta t_{\text{Geometry}} = \frac{D_{\text{L}} D_{\text{S}}}{c D_{\text{LS}}} \frac{(\theta - \beta)^2}{2}$$

• For the point mass lens, the time delay between the two images is

$$t_+ - t_- \simeq -(1 + z_{\rm L}) \frac{D_{\rm L} D_{\rm S}}{c D_{\rm LS}} 2\theta_E \beta$$

- Time delays are useful for:
 - Confirming GR (Shapiro time delay & SN Refsdal)
 - Improving lens models (SN Refsdal)
 - Determining cosmological parameters, in particular H_0 (H0LiCOW)