

#### **PHY-765 SS19 Gravitational Lensing Week 11**

# Modeling Gravitational Lenses

#### Kasper B. Schmidt

Leibniz-Institut für Astrophysik Potsdam (AIP)

#### Last week - what did we learn?

• Defined lens equation for multiple point mass lenses and star+planet lens

$$oldsymbol{y} = oldsymbol{x} - \sum_i rac{m_i}{M} rac{oldsymbol{x} - oldsymbol{x}_i}{|oldsymbol{x} - oldsymbol{x}_i|^2} \qquad oldsymbol{y} \simeq oldsymbol{x} - rac{oldsymbol{x}}{|oldsymbol{x}|^2} - qrac{oldsymbol{x} - oldsymbol{x}_\mathrm{p}}{|oldsymbol{x} - oldsymbol{x}_\mathrm{p}|^2}$$

• Effects on source magnification "light curves"

$$\Delta \mu_{\rm p} \simeq \frac{2\mu_0^2 q}{x^2 (x - x_{\rm p})^2}$$

- Discussed strengths of lensing planet search
  - No pre-selection on planet host star
  - No mass bias
  - Sensitive to planets in 'habitable zone'
- Discussed a few examples of found planets







# The aim of today

- What is relevant for the lens models
  - constraints and assumptions
- Parametric vs. Non-Parametric modeling
- (Mass-Sheet Degeneracy in lens modeling)
- Cluster lens modeling comparison efforts



#### Aspects Relevant for Modeling Covered So Far

- Lens Geometry & Light Deflection
- $\boldsymbol{\beta} = \boldsymbol{\theta} \boldsymbol{\alpha}(\boldsymbol{\theta})$ Lens Equation

$$\kappa(\boldsymbol{\theta}) \equiv rac{\Sigma(D_{\mathrm{L}}\boldsymbol{\theta})}{\Sigma_{\mathrm{cr}}}$$

Multiple images  $\boldsymbol{\beta} = \boldsymbol{\theta} - \langle \kappa(\boldsymbol{\theta}) \rangle \boldsymbol{\theta}$ 

$$o(r) = \frac{\sigma^2}{2\pi G(r^2 + r_{\rm core}^2)}$$

Time Delays 

$$\Delta t = \frac{D_{\rm L} D_{\rm S}}{c D_{\rm LS}} \left[ \frac{\left(\boldsymbol{\theta} - \boldsymbol{\beta}\right)^2}{2} - \frac{\Phi(\boldsymbol{\theta} - \boldsymbol{\beta})^2}{c^2} \right]$$

Magnification

$$\frac{S(\boldsymbol{\theta})d\Omega_{\text{lens plane}}}{S(\boldsymbol{\beta})d\Omega_{\text{source plane}}} = \frac{S(\boldsymbol{\theta})d\theta^2}{S(\boldsymbol{\beta})d\beta^2} = \frac{H}{H}$$



# Why Model Gravitational Lenses?

- Determine mass *distribution* of lenses
  - Individual galaxy (mass) studies
  - Test of gravity models
  - Infer size of cosmic over densities
  - Constrain dark matter nature
- Constrain time-delays
  - Determine cosmological parameters (H<sub>0</sub>)
  - Predict astronomical events (SN Refsdal)
- Reconstruct lensed sources in source plane
  - Resolved studies impossible without lens magnification
  - Combine data from multiple images to increase S/N

# Modeling Gravitational Lenses

- Lens modeling has been considered a "black art"/"black box"
- Partially due to lack of community-wide naming conventions and secrecy

In short, the problem with lens modeling is not that it is a "black art", but that the practitioners try to make it seem to be a "black art" presumably so that people will believe they need wizards [...] any idiot can model a lens and interpret it properly with a little thinking about what it is that lenses constrain. - C.S. Kochanek, 2006

- More efforts in recent years to mitigate this
  - Public availability of modeling codes
  - Modeling challenges to compare models
  - Larger campaigns involving multiple teams

# Modeling Gravitational Lenses

- Constraints for the model
  - Source Redshift
  - Multiple image positions
  - Relative fluxes and surface brightnesses
  - Galaxy morphologies and (distorted) sizes shear measurements
  - Parity measurements
  - Time-delays
  - Kinematics (stellar dynamics/cluster velocity dispersions) independent mass
- Assumptions about the model
  - Parametric and/or non-parametric modeling
  - Mass distribution relative to light (light traces mass LTM)
  - Smooth and/or multiple individual components
  - Single or multiple screen lens

- Parametric: Models with parametrized assumed density profiles, e.g.,
  - Isothermal sphere (week 5):  $\rho(r) = \frac{\sigma^2}{2\pi G(r^2 + r_{core}^2)}$  NFW profile (Navarro+97):  $\delta_c \rho_{cr}(z) = \frac{\delta_c \rho_{cr}(z)}{(r/r_{scale})(1 + r/r_{scale})^2} \quad \text{where} \quad \rho_{cr}(z) \frac{3H^2(z)}{8\pi G}$
- Populate the lens plane with such profiles to reproduce observables



• Trace the light by solving the lens equation (transforms between  $\beta$  and  $\theta$ )

$$\chi^2_{
m img} = \sum_i \left( rac{oldsymbol{ heta}_i(oldsymbol{eta}) - oldsymbol{ heta}_i}{\sigma_i} 
ight)^2$$

K. B. Schmidt, kbschmidt@aip.de

# Illustration of Parametric lens modeling

- Saha & Williams (2003) presented a qualitative tool for lens modeling
  - SimpLens.jar



K. B. Schmidt, kbschmidt@aip.de

- Basic idea: "There is an optimal estimate of source structure for any model"
- Surface brightness is conserved (week 7) so  $S(\beta) = S(\theta)$



- Basic idea: "There is an optimal estimate of source structure for any model"
- Surface brightness is conserved (week 7) so  $S(\beta) = S(\theta)$
- The lens equation describes the 'source position—image position' relation
- The goodness of fit can be estimated with



PHY-765 GL Week 11: June 19, 2019

- But... we never have a true surface brightness mapping
- The point spread function (PSF) of the telescope needs to be accounted for



K. B. Schmidt, kbschmidt@aip.de

PHY-765 GL Week 11: June 19, 2019

- But... we never have a true surface brightness mapping
- The point spread function (PSF) of the telescope needs to be accounted for
- This can be described in terms of a set of linear equations (matrix eq.)

$$\chi^2 = rac{|\mathbf{S}_I - P(\text{PSF, lens model}) \mathbf{S}_{\text{source plane}}|^2}{\sigma^2}$$

- Where *P* accounts for the PSF and lens model
- Solving and minimizing returns goodness of fit



#### The Mass Sheet Degeneracy

- But how unique can these (parametric or non-parametric) models become?
  - Even when assuming plenty of observational constraints
- Assume that your good model predicts some surface mass density,  $\kappa(\theta)$ 
  - satisfying the Poisson equation (week 3)  $\nabla^2 \psi = 2\kappa$
- Then an equally good fit is obtained from the family of lens models with  $\kappa_{\lambda}(\theta) = (1 - \lambda) + \lambda \kappa(\theta)$ Adding homogeneous surface mass density,  $\kappa_{c}$ Scaling of original  $\kappa$
- To prove this statment, first consider the lens equation for  $\kappa_{\lambda}$

$$\boldsymbol{\beta}_{\lambda} = \boldsymbol{\theta} - \boldsymbol{\alpha}_{\lambda}(\boldsymbol{\theta}) \quad \text{where} \quad \boldsymbol{\alpha}_{\lambda}(\boldsymbol{\theta}) = (1 - \lambda)\boldsymbol{\theta} + \lambda \boldsymbol{\alpha}(\boldsymbol{\theta})$$

• Using (week 3)  $\boldsymbol{\alpha} = \nabla \boldsymbol{\psi}$  we also have for the scaled case that

$$oldsymbol{lpha}_{\lambda}(oldsymbol{ heta}) = 
abla \psi_{\lambda}(oldsymbol{ heta}) = rac{1-\lambda}{2} |oldsymbol{ heta}|^2 + \lambda \psi(oldsymbol{ heta})$$

#### The Mass Sheet Degeneracy

• This makes sure that the Poisson equation holds in the scaled case, i.e.

$$\nabla^2 \psi_{\lambda} = 2\kappa_{\lambda} \qquad (\text{Exercise 3.1})$$

• Combining the two equations we get

$$\frac{\boldsymbol{\beta}_{\lambda}}{\lambda} = \boldsymbol{\theta} - \boldsymbol{\alpha}(\boldsymbol{\theta}) \qquad (\text{Exercise 3.2})$$

- So the  $\kappa_{\lambda}$  lens equation deviates from the original lens equation through  $\lambda$  only
  - The source plane coordinates are scaled by the factor  $\lambda$
  - You can't observe the source plane so effect is unobservable
- Hence, the Jacobian matrix and the magnification behave like

$$\mathcal{A}_{\lambda} = \lambda \mathcal{A} \qquad \qquad \mu_{\lambda} = rac{\mu}{\lambda^2}$$

• So from the definitions of shear and convergence (week 7) we get

$$\gamma_{\lambda}(\boldsymbol{\theta}) = \lambda \gamma(\boldsymbol{\theta}) \qquad (1 - \kappa_{\lambda}) = \lambda(1 - \kappa) \qquad (\text{Exercise 3.3})$$

• In agreement with our initial statement:  $\kappa_{\lambda}(\boldsymbol{\theta}) = (1 - \lambda) + \lambda \kappa(\boldsymbol{\theta})$ 

Week 7  $\mathcal{A}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial \beta_i}{\partial \theta_i} & \frac{\partial \beta_i}{\partial \theta_j} \\ \frac{\partial \beta_j}{\partial \theta_i} & \frac{\partial \beta_j}{\partial \theta_j} \end{pmatrix}$   $\mu \equiv \frac{1}{\det \mathcal{A}(\boldsymbol{\theta})}$ 

#### The Mass Sheet Degeneracy

• So this illustrates that:

For any good lens model, an equally good lens model can be obtained by adding a 'sheet' of mass to the surface mass density of the model and scaling it by a corresponding factor, call it  $\lambda$ 

- To break this degeneracy, modelers need prior information on either
- The absolute scale of the source
  - By knowing size or luminosity (scale) of the object
- An absolute mass scale for lens
  - obtained from stellar kinematics or cluster velocity dispersions
- Source positions as a function of redshift
  - multiple lensed systems at different redshifts (distances, D<sub>S</sub>)
  - $\kappa$  differs with source redshift as it depends on  $\Sigma_{cr}$  which depends on  $D_S$

#### Treu et al. 2016 Mass Models

1.8

0.0

2.0

0.0



Mass ( $\kappa$ ) maps for different lens models of MACS1149 shown in week 7

MACS1149 is the cluster lensing the host of SN Refsdal

Models used for predicting reappearance of SN Refsdal



K. B. Schmidt, kbschmidt@aip.de

#### Treu et al. 2016 Modelers

| <ul> <li>Diego et al.: WSLAP+</li> <li>Galaxies and cluster 'diffuse' mass components</li> <li>Galaxies assumed fixed M/L (except BCG) with NFW profile</li> <li>Diffuse mass determined by adaptive grid minillation</li> </ul> |                                                                                           | <ul> <li>Grillo et al.: GLEE</li> <li>300 cluster galaxies modeled as "pseudoisothermal elliptical" (dPIE)</li> <li>Scaling M/L of individual galaxies to match empirical M/L ∝ L<sup>0.2</sup> relation</li> <li>3 extra "dark matter" halos are added</li> </ul> |                                                                                                                   |                                                     |                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                  | Short name                                                                                | Team                                                                                                                                                                                                                                                               | Туре                                                                                                              | rms                                                 | Images                                                      |
| <ul> <li>Zitrin et al.:</li> <li>Light traces mass</li> <li>Scaling and smoothing of power-law distributions</li> <li>Best-fit obtained via MCMC chain conversion</li> </ul>                                                     | Die-a<br>Gri-g<br>Ogu-g<br>Ogu-a<br>Sha-g<br>Sha-a<br>Zit-g                               | Diego et al.<br>Grillo et al.<br>Oguri et al.<br>Oguri et al.<br>Sharon et al.<br>Sharon et al.<br>Zitrin et al.                                                                                                                                                   | Free-form<br>Simply param<br>Simply param<br>Simply param<br>Simply param<br>Simply param<br>Light-tr-mass        | 0.78<br>0.26<br>0.43<br>0.31<br>0.16<br>0.19<br>1.3 | gold+sil<br>gold<br>gold<br>all<br>gold<br>gold+sil<br>gold |
| <ul> <li>Oguri et al.: GLAFIC</li> <li>Assumes small number of m<br/>components: some follow ga<br/>(Jaffe profiles), some 'free' (</li> <li>Best model obtained from di<br/>minimization</li> </ul>                             | atter Sh<br>laxies - $\frac{1}{2}$<br>NFW) $\frac{1}{2}$<br>rect $\chi^2$ - $\frac{1}{2}$ | rms: root mean s<br>aron et al.: Le<br>Assumes elliptic<br>for of mass com<br>Cluster and gala<br>Cluster scale hal                                                                                                                                                | square of obs. vs. mode<br>enstool<br>cal mass distribution<br>ponents<br>axy scale halos<br>lo positions free to | al img positions (functations) vary                 | ons in arcsec                                               |
| K. B. Schmidt, kbschmidt@aip.de                                                                                                                                                                                                  | PHY-765 GL                                                                                | Week 11: June 19, 202                                                                                                                                                                                                                                              | 19                                                                                                                |                                                     | 16                                                          |

#### Treu et al. 2016 Mass Models

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.2

0.0

2.0

1.8

1.6 1.4

1.2

1.0 0.8

0.6

0.4 0.2



0.2

0.0

#### Mass (*κ*) maps for different lens models

| Team          | Туре          | rms  | Images   |
|---------------|---------------|------|----------|
| Diego et al.  | Free-form     | 0.78 | gold+sil |
| Grillo et al. | Simply param  | 0.26 | gold     |
| Oguri et al.  | Simply param  | 0.43 | gold     |
| Oguri et al.  | Simply param  | 0.31 | all      |
| Sharon et al. | Simply param  | 0.16 | gold     |
| Sharon et al. | Simply param  | 0.19 | gold+sil |
| Zitrin et al. | Light-tr-mass | 1.3  | gold     |



0.0 arcs

#### Treu et al. 2016 Magnification Models



K. B. Schmidt, kbschmidt@aip.de

PHY-765 GL Week 11: June 19, 2019

# Meneghetti et al. (2017) Model Comparison

- Model Cluster (Ares & Hera)
  - -z = 0.5
  - $M_{tot} \sim 2 \times 10^{15} M_{\odot}$
- Produced by ray-tracing with
  MOKA (Giocoly+12)
- HST images generated with
  SKYLENS (Meneghetti+08,10)
- Asked cluster modelers to predict  $\kappa$  and  $\mu$  (among other things)
- Provided:
  - Multiple images (with redshifts)
  - Cluster members
  - Large FoV image of background obj for shape measurements

#### **Synthetic Galaxy Cluster 'Ares'**



# Meneghetti et al. (2017) Comparison Metrics

#### **Reconstruction metrics**





K. B. Schmidt, kbschmidt@aip.de

#### PHY-765 GL Week 11: June 19, 2019

# Meneghetti et al. (2017) Findings

- First time such an extensive lens-comparison study was made
  - A good step on the way away from the "black art" of lens modeling
- Parametric models better at capturing 2D structure
- Non-parametric models competitive when determining 1D  $\kappa$  profiles
- Mass( $<\theta_E$ ), i.e. where strong lensing happens, is of the order a few %(!)
  - Substructures (cluster members) around critical lines increase this to  $\sim 10\%$
- Strongest limitation of parametric models: determining asymmetries

![](_page_23_Figure_0.jpeg)

K. B. Schmidt, kbschmidt@aip.de

PHY-765 GL Week 11: June 19, 2019

#### So in summary...

- Lens models are split into parametric and non-parametric models
- The goal of models is to minimize disagreement with observations, e.g.,
  - in terms of image positions
  - surface brightness measurements

 $\chi_{\text{img}}^2 = \sum_{i} \left( \frac{\boldsymbol{\theta}_i(\boldsymbol{\beta}) - \boldsymbol{\theta}_i}{\sigma_i} \right)^2$  $\chi^2 = \frac{\left| \boldsymbol{S}_I - P(\text{PSF, lens model}) \, \boldsymbol{S}_{\text{source plane}} \right|^2}{\sigma^2}$ 

• The Mass Sheet Degeneracy states that:

For any good lens model with  $\kappa(\mathbf{\theta})$ , an equally good lens model can be obtained by a model with  $\kappa(\mathbf{\theta}) = (1 - \lambda) + \lambda \kappa(\mathbf{\theta})$ 

- MSD can be broken with multiple lensed systems or kinematic masses
- Improved efforts for comparison of (cluster) lens models are underway
  - Treu+16: Comparison of models to predict SN Refsdal re-appearance
  - Rodney+15: Comparison of models predicting SN 1a magnification
  - Meneghetti+17: Comparison of model predictions for (two) simulated cluster