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[.ast week

e History of GL including early predictions including:
- Light 1s affected by gravity
- Deflections of 10s of arc sec for galaxy lenses
- Useful for lens mass estimates
Spectroscopy 1s a key for identifying lenses
e People were considering deflection of light in Newtonian gravity (<1915):
- oaNn=2GM / c?r
 GR came along and changed this deflection to (>1915)
- OQGrR=2 X oaNn=4GM | c*r

* Growing importance of GL over the last 40 years (still growing)
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The aim of today

 The Geometry of Gravitational Lensing:
- Schematic of angles, distances and light-paths in GL

* Light deflection:
- How did they arrive at the Newtonian deflection angle?

- What changed things for the GR deflection angle?
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Gravitational Lensing Geometry

Source Lens

1]: 2D source position in source plane
Plane Plane

B: source position angle
§: impact parameter
o: deflection angle

0: apparent source position
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The Newtonian Deflection Angle, an

e Last week we heard that, e.g., Newton, Cavendish, Laplace and Soldner all
considered deflection of light in Newtonian gravity. But how?

e Consider a point particle, v of mass m, deflected by a lens, L, with mass M
e Position a polar coordinate system (¢,R) with origin on the lens
e Let ¢o be the angle at closest approach

* We know from Newtonian Gravity that in 3D

d?r mMG
a2 ~ r2
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The Newtonian Deflection Angle, an

e But the motion considered here 1s confined to 2D (¢,R), so decomposing

- d*7 mMG -
dt2 r2
* into the polar coordinate system just defined we have
R [R— Rq.bz] | q31 dt o| = A;ER (Exercise 2.1)

e Note: m drops out, 1.e. this expression i1s independent of particle mass
- Convenient given that we want to considering the mass-less photon, v

 Angular momentum 1s a conserved quantity

0. |L| _
R¢—m—Jz
e Hence
dr .. d
7 [B6| = g 1] =0
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The Newtonian Deflection Angle, an

o ' 1 A [ o - MG -
This gives R {R | Ro*} = — S R
. 1 o MG
R— — (R‘(;r) o
R?> R*
B J% _ MG
R R?
. JR
e Using that R = ;32
. J2 [R" 12 (Exercise 2.2)
R=—-2% 2R
R? | R? R3

* The equation of motion becomes

R’ 2R’2 1 MG
R?2 "R} R  J?
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The Newtonian Deflection Angle, an

e Changing variable from R to u, where u = I/R we get

MG
u +u= (Exercise 2.3)

JZ

e This 1s an inhomogeneous second order differential equation

e The solution to this equation can be expressed by the cyclic function

LzAxcos[qﬁ—qﬁo]+‘M—G

R(¢) Jz
e At very early times
- Ris large
- ¢ is small
d . .
tanqb:%:qb = Egb: =—%R N
* Which means that the normalized angular momentum J; =—=¢ R
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The Newtonian Deflection Angle, an

But as we are looking at the photon with velocity 1s -c¢ giving that

J, =€&c (-c as velocity is opposite R-direction)

which can be inserted into the solution to the equation of motion

Stil]
In t

| need to d

1

B = A X cos o — g

R(¢)

etermine A and

he limit w!

MG
£2¢2

| 0. We will use “initial conditions” for this

nen R — <0 and

& —0
MG

COS ¢g = A2
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The Newtonian Deflection Angle, an

* Secondly we look at the 1nitial velocity, 1.e. differentiating wrt. ¢

d 1 d d MG
=5 = aAcos(qS—qbo)-F it €202
Y
oy = A(=sin(d— ¢0)9)
R ENED)
4
A = : -
~ sin(¢p — ¢o)€ sin(¢o)§

e This gives us two equations to determine the two unknowns A and ¢
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The Newtonian Deflection Angle, an

* So we have the following:
1 MG

_=Axcos[¢—¢0]+—c COS¢0:A€262

R(¢)

------------------------

 What 1s the size of ¢p without deflection?
1

MG

A~ = = COS (g =

§

§c?

 What is the size of the deflection compared to ¢g?

e Taylor expanding this expression leads to:

cospg =~ cos(m/2)+ (—sin(7/2))(¢po — 7/2) +
~ g — /2 = —€

— cos(m/2)

2

Qo = T/2

¢ ~ W2+e

(¢0—7I'/2)+...
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The Newtonian Deflection Angle, an

e Which then results in T MG
Po=75+ 73

 From geometry we can express .

------------------------

20 +a=m

e So we have that
a = 2¢0 — T

e Which combined with the above gives:
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The GR Deflection Angle, acr

Moving to GR, we want to describe the distortion by gravity in the curved
space-time. Curvature analog to longitude and latitude on Earth

Need to define some GR jargon:
- guw: The metric tensor where gtV 1s the inverse of gy

- I'B,y : Tha affine connection, i.e. Christoffel symbols

>
%
K

ﬁ -agﬂp . agﬂu aguy- .PrimeMeridia
2 |0z = Ozt  Ozf

o, =

We consider the geodesic equation (geodesic = “straight line™)

d*z*  _, dztdz¥

= —I
d)\? HYdX\ d)
where x* = (¢, x, y, z) and 3,u,v run over (0,1,2,3) and i,j,k over (1,2,3)

In GR time 7 is not ‘special’ so differentiate wrt. the affine parameter A

dx® o N
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The GR Detlection Angle, aGr

e Using that dzx’
dA

d*z’

d\?

dxz* dt B dz* E
dt d\ dt c

cdt | c dit

~ Ed [E da:i] N E? d?x?

* We can write the geodesic equation as

E? d*x* ) 5
2 g Lwh'P

2 dt?

e This 1s the expression for a particle’s motion in a given space-time

* Need to define the space-time through the ‘metric’.

 The metric when deflection 1s induced by a point mass M 1s

go O O

Gy = 0 911 O
e 0 00 g2

0 0 0

U goo
g where
g33 9ij
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The GR Detlection Angle, aGr

e The line element for this metric 1s (analog to ‘Pythagoras’ in cartesian 2D)

ds® = goo dt* + gij dz’ dz? =0 /( : | o

e GR time dilation: ) 2GM dz
c’ |1

00 =
g rc2

o ds=ie(1-2MVy L @B (1M
rec? c rc?

 GR Length Contraction:

9ij = —O0i (1+

I
|

rc2

= ds = \/— (1 + ZGJZW)dmi = dt ~ ds (1 GA;I)
re re

2GM )
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The GR Detlection Angle, aGr

e Using the metric g,v we can ¢
o

B _
I = >

erive the Christoffel symbols using

Gy
ozP

agﬂu

- 098,
+
OxH

- OzV

* This enables us to express the geodesic equation in terms of the metric:

E? d?z?
2 e

==L, p"p"

—T4op’p° — 2T, p°p’ — 0’ p"

B MGz E? 0 Ti.p8y3 Central term 2nd or(}er |

— 3 o2 —133P P Last term only solution in z

_ MGz' E*  MGz' E? using p? = E/c for photon
r3 2 r3 2

B 2M Gz E?

o r3 2
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The GR Deflection Angle, acr

General Relativity Newtonian Gravity
d*z*  2MGz’ d°r MG'F'
dt2 r3 dt? r?

* Hence, by realizing that x* just represent the spatial vector of the photon in
GR, we can move on from here, following the Newtonian derivation of o
step by step carrying through the factor of 2 and eventual arrive at:

AMG
Qgr =2 X ay =

§c?
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S0 1In summary...

AMG
§c?

(XGR=2X(1N=

As claimed last week...
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